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nt of coastal biogeochemical cycles at various spatial–temporal scales.
phytoplankton dynamics in coastal zones is the remote sensing reflec-
f colored dissolved organic matter (CDOM), phytoplankton biomass,
ed data from the Moderate Resolution Imaging Spectroradiometer
ends (2003–2021) in remote sensing reflectance across the inner
Patagonia is a major fjord/channel system receiving large freshwater
s materials. These discharges significantly alter the water chemistry
omplexity arising from the interplay between major freshwater sources
mporal variability of primarily linked to the seasonality in turbidity
Patagonia’s river discharge and turbidity to climate change. They also
, etc), triggering shifts in biophysical patterns.
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Abstract 

The variability of phytoplankton dynamics is a crucial compone 
A key geophysical parameter that advances our understanding of 
tance , which can be used as a proxy for the concentrations o 
and other organic and inorganic particles. In this work, we us 
onboard the Aqua satellite (MODIS-Aqua) to study long-term tr 
waters of the Chilean northern Patagonia. The Chilean northern 
discharges from continental glacial rivers loaded with terrigenou 
and its bio-optical properties. Our findings reveal that the optical c 
and the marine system in the Inner Sea of Chiloé leads to a high te 
patterns. These findings have significant implications for northern 
highlight the substantial changes in water quality turbidity
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1. Introduction 

Over the past 20 years, the continuous monitoring of 
ocean color has led to unprecedented insights into the spa-
tial and temporal dynamics of phytoplankton biomass 
(Behrenfeld et al., 2009; Demarcq et al., 2020; Tilstone 
et al., 2021). The phenology of surface phytoplankton bio-
mass in coastal temperate ecosystems has a well-established 
sinusoidal variability. Algal cell concentrations are low 
during winter when light and nutrient supply are limited. 
Algal blooms occur during spring after solar irradiation 
increases, and vertical mixing and coastal runoff increase 
nutrient supply. Bloom senescence occurs when nutrients 
are depleted through photosynthesis and zooplankton 
grazing (Sapiano et al., 2012; Friedland et al., 2018; 
Trombetta et al., 2019). Thus, the seasonal cycle of phyto-
plankton and the biophysical processes modulating pri-
mary production are crucial to understanding coastal 
biogeochemical cycles (e.g. Hays et al., 2005; Winder and 
Sommer, 2012; Behrenfeld, 2014). 

The spatial and temporal coverage of the satellite ocean 
color allows us to regionalize in situ measurements of phy-
toplankton abundance or concentration (Gilerson et al., 
2022). Several semi-analytical and empirical algorithms 
have been developed as indicators of phytoplankton bio-
mass (e.g. Blondeau-Patissier et al., 2014; Werther et al., 
2022; Yang et al., 2022). Empirical algorithms based on 
the relationship between in situ surface and remote 
sensing measurements vary in complexity, from band ratios 
and multiple linear regression techniques to machine learn-
ing algorithms (Pahlevan et al., 2020; Sherman et al., 2023). 
Semi-analytical algorithms are linear relationships between 
inverted remote sensing reflectance ; sr  1 ) and inherent 
optical properties (IOPs) of the water. Semi-analytical 
techniques are used to derive chlorophyll–a concen-
trations using the absorption coefficients of other optically 
active water components independent of the ambient light 
field (O’Reilly et al., 1998; Sherman et al., 2023). According 
to the seminal work by Morel and Prieur (1977), IOPs in 
oceanic waters are dominated primarily by phytoplankton 
(case I waters). In coastal and inner waters (case II waters), 
suspended material and non-algal particles introduce 
uncertainty in the retrieval of and water clarity (Liu 
et al., 2020; McKinna et al., 2021; Turner et al., 2021; 
Nasiha et al., 2022). A key geophysical parameter for 
remotely sensed ocean color is i.e., the ratio of the 
upwelling radiance to the downwelling irradiance at the 
ocean surface (Werdell et al., 2018; Dutkiewicz et al., 
2019). The different across the ultraviolet (170– 
380 nm), the visible range (380–780 nm) and near-
infrared spectral bands (780–3300 nm) allow us to reduce 
uncertainties in the size distribution of the different parti-
cles that contribute to the IOPs of marine coastal environ-
ments (Lee et al., 2007; Doxaran et al., 2007). In this 
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context, it is critical to improve further the performance 
of bio-optical measurements in aquatic ecology and water 
quality studies in coastal and inner waters (Wei et al., 
2018; Bisson et al., 2021). 

In northern Patagonia (41–45 S), the transition from 
pristine temperate rainforests to landscapes modified by 
agriculture and timber plantations changes the quality of 
freshwater in streams and rivers (León-Muñoz et al., 
2013). The significant input of terrestrial organic carbon 
can alter the supply of mineralized nutrients and other 
solids, influencing the penetration of light into the water 
column, hence the structure of autotrophic biomass 
(González et al., 2010; Cuevas et al., 2019). Northern 
Patagonia is a major fjord–channel system that receives 
large freshwater discharges from continental glacial rivers 
(Lara et al., 2016; Flores et al., 2022) loaded with terrige-
nous substances (e.g., colored dissolved organic matter; 
CDOM) that modify the chemistry, bio-optical properties 
of coastal waters (Curra-Sánchez et al., 2022), and nutrient 
ratios (e.g., Si: N or Si: P) on multiple temporal and spatial 
scales (Vargas et al., 2011; León-Muñoz et al., 2021). Sim-
ilarly, the meridional pattern in biological activity exhibits 
high variability in response to annual variation in environ-
mental forcing (Lara et al., 2016; Vásquez et al., 2021; 
Muñoz et al., 2023). High-resolution satellite products 
can aid in evaluating the status of autotrophic by-
products and assess potential changes in water quality in 
northern Patagonia. To date, most studies in northern 
Patagonia have focused on the variability of freshwater 
input from rivers (Flores et al., 2022), the evolution of 
sea surface temperature (SST) and salinity fronts (Saldı́as 
et al., 2021), among other characteristics of ocean color 
(e.g. Lara et al., 2016; Vásquez et al., 2021; Muñoz et al., 
2023) on multiple spatio-temporal scales. 

In this study, we evaluated the variability of the and 
band ratios derived from the MODIS–Aqua sensor to 
investigate seasonal variations in water quality in northern 
Patagonia. We aim to comprehensively examine the trends 
of in visible wavelengths (412–678 nm) for surface 
waters of the Inner Sea of Chiloé (ISC) in northern Patag-
onia during the MODIS-Aqua period (2003–2021). These 
analyses contribute novel insights to enhance biogeochem-
ical monitoring and refine modeling efforts within this bio-
optically poorly studied region. This study focuses on elu-
cidating patterns of bio-optical properties of water, which 
are crucial for capturing the pronounced spatial and tem-
poral variability observed within the area. 

2. Materials and methods 

2.1. Study area 

The ISC is located in northern Patagonia and is charac-
terized by the presence of several oceanographic basins (see
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Fig. 1. (a) Bathymetry of south-central Chile. The red box show of the study area. (b) Inner Sea of Chiloé. GFO: Boca del Guafo, CHC: Chacao channel, 
PUE: Puelo River, YEL: Yelcho River, PAL: Palena River and, DI: Desertores Island, RE: Reloncavı́ estuary. (c) Longitudinal section from station St-1 
to St-7. d) trend river discharge (2001–2020. The filled circles show those months that are significant in the trend (p-valu .05). The color bar show the 
depth (in meters) and the solid gray line in a) and b) panels the 200 m isobath. Bathymetric data were obtained from The General Bathymetric Chart of the 
Oceans GEBCO (https://www.gebco.net/) and river discharge of the Dirección General de Aguas, DGA (https://dga.mop.gob.cl/Paginas/hidrolin.easatel. 
aspx).

e 0
Fig. 1) exhibiting high heterogeneity in local environmental
conditions (Iriarte et al., 2007; Vásquez et al., 2021; Saldı́as
et al., 2021). The precipitation and streamflow regimes
have shown a marked decrease in magnitude in the past
decade compared to historical averages (Aguayo et al.,
2021), which has had repercussions on the seasonal varia-
tion in the structure of autotrophic communities
(González et al., 2010; Iriarte et al., 2017) and the biogeo-
chemical processes therein (Linford et al., 2023). The mar-
18
ine system along the ISC is influenced by the intrusion of
high-salinity oceanic waters through the Chacao Channel
(CHC) from the north and Boca del Guafo from the south
(see CHC and GFO, Fig. 1(b)) (Strub et al., 2019; Vásquez
et al., 2021). Large freshwater inputs enter from several
continental rivers, mainly (from north to south) Puelo, Yel-
cho and Palena (see PUE, YEL and PAL, Fig. 1(b)). Small
rivers also drain into the ISC from Chiloé island; several do
so through the densely urbanized Castro fjord area, at the

move_f0005
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west end of the Desertores island chain, and facing the Yel-
cho drainage on the continental side (Fig. 1(b)). To explore 
the long term variability in we separated the ISC into 
two sub-regions based on and regimes (Lara 
et al., 2016; Saldı́as et al., 2021) (42.6 S, see red arrows in 
Fig. 1(b)).

2.2. Satellite and processing data 

To study long-term trends in from January 2003 to 
December 2021, we used quality-controlled daily swaths 
create gridded monthly composites at a spatial resolution 
of 1000 meters. We downloaded the level-2 imagery from 
MODIS–Aqua from NASA’s Ocean Color website 
(http://oceancolor.gsfc.nasa.gov). MODIS–Aqua is a 
polar-orbiting NASA Earth Observation satellite, local 
ascending at the equator, with a 1:30 pm local standard 
time overpass. The MODIS–Aqua sensor has ocean bands 
(bands 8–14) with high gain settings to sense the character-
istics of dark water bodies. In contrast, the land bands used 
here (bands 1, 3, 4) have lower gain settings to detect 
brighter features on land, which can be used in brighter 
inland and coastal water bodies (Franz et al., 2006). After 
an atmospheric correction to remove the contributions of 
aerosols and additional corrections for whitecaps, sun 
glint, and other artifacts, ocean water contributes less than 
10 of the top-of-atmophere (TOA) reflectance (Katsaros, 
2015). Using corrected TOA data, we calculated at the 
water surface with the 10 bands that are useful for ocean 
color studies: 412, 443, 469, 488, 531, 547, 555, 645, 667, 
and 678 nm (Ahmad et al., 2010; Feldman and McClain, 
2014). A variable number of images were used each year 
from 2003 to 2021, specifically: 817, 819, 812, 805, 795, 
809, 804, 804, 811, 799, 799, 797, 803, 802, 797, 803, 793, 
769, and 788. All data were processed using Matlab 
2017b (The MathWorks Inc, 2017). 

2.3. River discharge and in situ hydrographic data 

Daily (2001–2020) discharge data for the Puelo, Yelcho, 
and Palena rivers were obtained from their respective mon-
itoring station from the Sistema Hidrométrico en Lı́nea of 
Dirección General de Aguas, Chile (https://dga.mop.gob. 
cl/Paginas/hidrolineasatel.aspx). The Servicio Hidromé-
trico Nacional has 1330 stations that transmit online data 
through the satellite systems or GPRS (General Packet 
Radio Service). The locations of the selected monitoring 
stations are indicated in Fig. 1b. Daily flow measurements 
were averaged monthly and the months that showed statis-
tical significance p-value 0.05 in the river flow trend were 
identified. 

In order to establish seasonal variability and surface 
spatial distribution (1 m depth) of turbidity and in 
coastal waters, we carried out two oceanographic cruises 
in austral summer (January 22) and winter (July 27) in 
2021. All cruises included a towed longitudinal section 
from station St-1 to St-7 (see Fig. 1c) using an AML–3 
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XC profiler (AML Oceanographic, Canadá). This instru-
ment can be submerged to 600 m and has auxiliary dis-
solved oxygen, turbidity, and sensors. The auxiliary 
turbidity sensor is provided by X2changeTM Sensors with 
a maximum profiling depth of 600 m. The measurement 
range varies between 0–3000 NTU with a resolution of 
0.01 NTU and a response time 0.7 s. The auxiliary 

sensor has a measurement range between 0–500 ug/ 
L with a resolution of 0.01 ug/L and a response time of 
200 ms. Using the turbidity and data from the cruises, 
surface sections were constructed to analyze the spatial 
variability of both variables. Finally, we obtained in situ 
hourly turbidity and (1 m depth) data from the 
OMARE hydrographic buoy for the 2018–2023 period 
from Centro de Estudios Avanzados en Zonas Á ridas 
(CEAZA-Met, https://www.ceazamet.cl/).The mainte-
nance is regularly carried out by Centro i-mar, Universidad 
de Los Lagos, Chile (see location in Fig. 1). 

2.4. Climatology and trends 

For the calculation of climatologies and trends, we 
divided the ISC into northern and southern marine basins 
along the axis of the Desertores Islands (e.g., Lara et al., 
2016). The monthly gridded data for all pixels in each 
region was then averaged to obtain univariate time series 
for each band. We computed the band ratios of individ-
ual bands as where (e.g., Turner 
et al., 2021). Spatially averaged data were used to com-
pute climatologies and trends for the individual univariate 

bands and the band ratios . In addi-
tion, we generated spatial maps of long-term trends by 
computing trends for individual pixels. The climatologies 
were used to identify patterns of seasonal variability in 
space. Long-term trends were calculated using the slope 
of a least-squares fit. The statistical significance was evalu-
ated by their p value, using 90 confidence inter-
vals. Following Turner et al. (2021), trends were expressed 
in terms of relative change using the trend per year normal-
ized by the long-term mean value: 

Relative change yr 1
trendRrs sr 1yr 1 

meanRrs sr 1 1 

Relative change yr 1 
trendRrs k1 

Rrs k2 
sr 1yr 1 

meanRrs k1 
Rrs k2 

sr 1 2 

Chla 

Chla 

Chla 

Chla 

Rrs 
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Rrs k (Rrs k1 Rrs k2 )

(p 0 1) 
3. Results 

3.1. Temporal variability in mean monthly 

In general, temporal trends in all and band ratios evi-
denced a spatially homogeneous positive trend for the ISC 
(see Supplementary Figs. 1 and 2). The climatology of the 
individual bands showed high temporal heterogeneity 
(Fig. 2. In the blue spectral region, the maximum values
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Fig. 2. Climatology of mean monthly for each MODIS band over the 2003–2021 period. series have been averaged over the northern (black) and 
southern (orange) ISC, as defined in Fig. 1. Error bars represent the standard deviation of the region-averaged series over the same time period. By 
wavelenght, climatologies show (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) Panels k–o 
correspond to zoomed-in versions of panels f–.j, respectively. 
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Rrs412, Rrs443, Rrs469, Rrs448, Rrs531, Rrs547, Rrs555, Rrs645, Rrs667, Rrs678. 
were observed between May and July (Fig. 2))
between November and January (Fig. 2(c,d)), while the
lowest values occurred during the austral summer. The
412 nm band showed the highest values, which were
accompanied by a high standard deviation (Fig. 2(a)).
The bands corresponding to the green spectral region
(i.e., 531, 547, and 555 nm, respectively) generally showed
lower spatial variability in their average values and stan-
dard deviations compared to reflectance in the blue spectral
region (Fig. 2(e-g)). The spectral bands associated with the
red spectral region exhibited higher temporal variability
and standard deviations than those observed in the green
region; however, these values were the lowest among all

observations . When examining the red/-
green climatological ratios, high homogeneity and low
standard deviation were observed in both the northern
and southern regions (Fig. 3(a-g)). The greatest temporal
variability was observed in the green/blue ratios in associ-
ation with high standard deviations (Fig. 3(i-k)); these
ratios also showed higher magnitudes in the northern
region of the ISC. Climatologically, the green/red band
ratios exhibited the highest values during December and
January, while the highest green/blue band ratios were
observed between February and April. Interestingly, the

ratio (Fig. 3l) showed low spatial and tempo-
ral heterogeneity, with values around 1–1.5. It is important

(sr 1 ) 

Rrs ( 1x10 3 sr 1 ) 

Rrs488 Rrs469/
20
to note that the climatology of all for the northern 
region had higher values than the southern region through-
out the spectral range examined here. 

3.2. Spatial heterogeneity in mean monthly 

Single bands showed significant spatial heterogeneity 
along the ISC (in terms of northern and southern regions). 
The and showed significant negative 
trends in the Reloncavı́ Sound, an area directly influenced 
by the Puelo River (Fig. 4 (a-d)). In contrast, the blue 

band showed a negative overall trend along the 
ISC. The green bands and also exhib-
ited a significant and negative trend at the eastern bound-
ary of the Reloncavı́ Sound and, generally, around the 
mouths of major rivers (Fig. 4(e-g)). Disagreeing with this 
general spatial pattern, the red bands and 
(Fig. 4(h-i)) showed a positive and significant trend in the 
western band of the northern region of ISC. In contrast, 
the band showed a significant negative trend span-
ning the axis of the Desertores Islands (Fig. 4j). As evi-
denced in Fig. 5, the red and green band ratios did not 
show significant spatial trends at a 95 confidence level 
except for small areas close to the coast along the northern 
sector (Fig. 5(a-h)). In contrast, the spatial heterogeneity 
between the green and blue band ratios revealed a spatially
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Fig. 3. Climatology for ratios for the 2003–2021 period. ratios series have been averaged over northern (black) and southern (orange) ISC, as 
defined in Fig. 1. Error bars represent the standard deviation of the region-averaged series over the same time period. By wavelenght, climatologies 
show (a) (b) (c) (d) (e) (f) (g) (h) (i) 

(j) (k) (l) 
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Rrs667 Rrs555, Rrs667 Rrs547, Rrs667 Rrs531, Rrs667 Rrs488, Rrs645 Rrs555, Rrs645 Rrs547, Rrs645 Rrs531, Rrs645 Rrs488, 
Rrs555 Rrs469, Rrs547 Rrs469, Rrs531 Rrs469, Rrs469 Rrs488. 
extensive and significantly increasing trend, which, in the 
case of the blue/blue band ratio encompassed almost the 
entire study area (Fig. 5i-l). 

3.3. Trends in mean monthly 

In general, the seasonality trends for single bands did 
not show significant differences between regions during 
the austral summer months (December, January, and 
February Fig. 6). However, the northern region generally 
exhibited a pattern of greater variability in monthly trends 
for all bands. Blue bands exhibited statistically signifi-
cant and synchronous trends between May-June and Octo-
ber (austral late fall-early winter and spring, respectively) 
in both ISC regions (Fig. 6a-d). Interestingly, 
showed a positive trend in late austral winter (August), 
while and showed the opposite pattern during 
the preceding months (May, June, July), for the north and 
the south ISC, respectively. We did not detect any signifi-
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21
cant trends in reflectances for any of the green bands 
to . In the case of the red bands, we 

found significant negative trends during late austral spring 
in the southern region (November, Fig. 6h-j). We found 
significant area-averaged trends for all band ratios exam-
ined, and patterns sometimes differed between ISC regions 
(Fig. 7). Again, greater temporal variability was evident in 
the northern region except for the green/blue and blue/blue 
ratios. Across all the red/green and red/blue ratios, trends 
for late austral spring (November) were significantly nega-
tive and only for the southern basin (Fig. 7a-h). Based on 
the green/blue ratios, our findings reveal significant posi-
tive trends synchronous between regions only during aus-
tral fall (May-June). On the other hand, the southern 
region showed significant positive trends for all green–blue 
ratios for late austral fall (May-July) or widespread posi-
tive trends from austral fall to spring (October, Fig. 7i-k). 
Finally, the Rrs469 band ratio showed a significant 
positive trend almost year-round in both regions (Fig. 7l).

(Rrs531 Rrs555) Rrs 

Rrs488/
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Fig. 4. Significant trends (p 0.1) over time in at single bands, from 2003–2021 for (a) (b) (c) (d) (e) (f) (g) 
(h) (i) (j) Trends are expressed as relative trends normalized to the long-term mean at each location. 

Fig. 5. Significant trends (p 0.1) over time for ratios for the 2003–2021 period. (a) (b) (c) (d) 
(e) (f) (g) (h) (i) (j) (k) (l) 

22

Rrs Rrs412, Rrs443, Rrs469, Rrs488, Rrs531, Rrs547, 
Rrs555, Rrs645, Rrs667, Rrs678. Rrs 
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Fig. 6. Climatology of trends over time for each band for the 2003–2021 period. Blue circles indicate mean trends for the northern and red squares 
indicate mean trends for the southern ISC, as defined in Fig. 1. The shaded areas indicate the spatially-averaged standard deviation for the trends in each 
region. Filled symbols indicate significant trends. 

Rrs 
3.4. Temporal variability of in situ turbidity 

The climatological analysis identified two prominent 
annual peaks in turbidity levels: the first in April (austral 
fall) with an average value of 0.33 NTU and the second 
in November (late austral spring) with an average value 
higher than the first peak in April (1.33 NTU). The lowest 
turbidity was identified in June and July with values of 0.03 
and 0.04 NTU, respectively (Fig. 8a). The climatology 
showed a first peak in April (4.1 ug/L) and a second peak 
in August of lower magnitude (3.2 ug/L). May, July, and 
November showed the lowest concentrations with 
values 1.3 ug/L (Fig. 8b). In general, the monthly vari-
ability of turbidity is well related to where turbidity 
peaks are inversely proportional to peaks (i.e. in 
November). 

Turbidity and were collected in surface waters 
along a zonal section (St-1 to St-7) during two campaigns 
conducted in 2021 with St-1 situated near the eastern shore 
at the Puelo River mouth and the St-7 near the opposite 
shore (western shore).The sections of turbidity and 
showed differences and between the seasons of Juny and 
July. The tubidity in January showed average values of 
0.53 0.12 NTU while, in July the turbidity was 
0.48 0.08 NTU. In space, the January towed section of 
turbidity showed greater variability than in July at the 
mouth of the Puelo River (St-1) which was more noticeable 
after the OMARE buoy towards St-7 (Fig. 8c). The surface 
sections of revealed a strong contrast between the 
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months of January and July with average values of 
1.30 0.29 and 5.67 3.78 ug/L, respectively. As with tur-
bidity, the position of the OMARE buoy marks a longitu-
dinal boundary between low (before) and high (after) 
(Fig. 8d). 

4. Discussion 

Our results provide the first regional-scale evaluation of 
remote sensing reflectances . Results are consistent 
with seasonal patterns found in some of the satellite char-
acteristics (e.g. SST, river plumes) described for tem-
perate zones (Iriarte et al., 2007; Vásquez et al., 2021; 
Flores et al., 2022; Muñoz et al., 2023), and have important 
implications for the study of water quality in case II waters 
(inland and coastal ocean waters) (Blondeau-Patissier 
et al., 2014; Dogliotti et al., 2015; Turner et al., 2021). 
However, some aspects of this study require special atten-
tion. Remote sensing-derived reflectances are useful to 
monitor and retrieve water quality parameters in the upper 
ocean layer as their optical properties depend on phyto-
plankton abundance and composition, the concentrations 
of suspended matter (sediments and detritus), and dis-
solved organic matter (Hellweger et al., 2004; Yang et al., 
2022). 

Over the last 20 years, with advances in remote sensing 
technologies, different bio-optical algorithms have been 
developed to estimate water quality variables with high 
precision and low bias (Doxaran et al., 2007; Topp et al.,
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Fig. 7. Climatology of trends over time for ratios for the 2003–2021 period. Blue circles indicate mean trends for northern ISC and red squares indicate 
mean trends for southern ISC, as defined in Fig. 1. The shaded areas indicate the spatially-averaged standard deviation for the trends in each region. Filled 
symbols indicate significant trends. 

Rrs 
2020). The optical characteristics of have been estab-
lished in different ecosystems (ocean, lakes, inland waters)
and then used as a proxy of biological activity to study pat-
terns of spatio-temporal variability (Saberioon et al., 2020;
Vásquez et al., 2021; Karimi et al., 2024). However, the
optical complexity of the interaction between rivers and
marine systems has received limited attention. Optical
properties are strongly influenced by time-varying pro-
cesses such as river runoff and snowmelt. In this way, the
optical complexity associated with turbid freshwater has
curtailed the use of satellite data to characterize the tempo-
ral dynamics in these region (Flores et al., 2022; Curra-
Sánchez et al., 2022). The seasonality in autotrophic bio-
mass along the ISC is often related to the seasonality of
river outflow, sea surface temperature and solar radiation
(Iriarte et al., 2007; González et al., 2010). Satellite retrieval

Chla
24
of algal pigments (such as as an index of the produc-
tivity of marine ecosystems is often based on blue, green, or 
near-infrared (Blondeau-Patissier et al., 2014). In case II 
waters, the absorbance of the humic color (referred to here 
as colored dissolved organic matter, CDOM), more specif-
ically in the blue region (412 and 443 mn), is higher than 
for (Menken et al., 2006), affecting the accuracy of 
surface estimates in some coastal ecosystems 
(Mishra and Mishra, 2012). 

In this study, we noted a higher band ratios values in 
northern basin, comparing with southern basin. According 
to our observations, this is primarily due to the northern 
basin being influenced by greater river discharges, espe-
cially during the austral fall and spring seasons, when the 
highest precipitation (fall) and river input (spring) occurs 
(Lara et al., 2016; León-Muñoz et al., 2021). Additionally,
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Fig. 8. a) Annual climatology for turbidity and b) chlorophyll-a (2018–2023) at 1 m. Longitudinal Section (1 m depth) for c) turbidity and d) 
chlorophyll-a in 22, January (black line) and 27, July, 2021 (gray line) in 2021. The St–7 near to river discharge and ST-1 marine condition. 
factors such as harmful algal blooms and autochthonous 
organic particles and allochthonous particulate organic 
carbon from rivers or glaciers that enhances a diverse par-
ticle pool (Vargas et al., 2011) may introduce greater vari-
ability in the northern basin (Garcı́a-Tuñon et al., 2024). 
Flores et al. (2022) conducted an EOF analysis of 
revealing spatial differences among the first three modes 
for the northern and southern basins. Furthermore, 
Muñoz et al. (2023) identified spatial differences in the first 
two EOF modes between the northern and southern basins 
for which influence the biophysical properties of the 
study area. This consideration is relevant to improving our 
interpretation of bands and their contribution to under-
standing the biophysical dynamics in the ISC. Indeed, this 
is critical to define relevant IOPs in optically complex 
waters (Lo Prejato et al., 2020). 

We detected significant decreasing trends in the blue 
part of the spectrum during early winter and spring, and 
spatio-temporal trends were apparent for The 
reduced reflectance and hightened absorption at 469 nm, 
a characteristic wavelength associated with the absorption 
spectrum of carotenoid xanthophylls, crucial for photopro-
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tection (Roy et al., 2011). Notably, pigments like canthax-
anthin, dinoxanthin, and violaxanthin constitute these 
xanthophylls, exhibiting high absorption coefficients 
around 469 nm (Roy et al., 2011). These pigments are inte-
gral to the pigment profiles of potentially harmful red tide-
forming dinoflagellates, including Karenia spp., Alexan-
drium minutum, lexandrium minutum, Gymnodinium catena-

tum, and  Dinophysis spp (Gong et al., 2017). 
Turbidity, a commonly used physical parameter for 

assessing the optical environment for water quality, exhi-
bits spatio-temporal variations alongside those observed 
for such that observations of typically aid in 
identifying areas at risk of elevated turbidity (Cloern, 
1987). Understanding turbidity as a measure of the amount 
of light scattered and absorbed by different components of 
the water column is crucial for effective water resource 
management and ecosystem productivity control (Wang 
et al., 2019, and references therein). Surface turbidity is 
generally determined by sediment resuspension in shallow 
or coastal areas or transport from terrestrial systems 
(Cloern, 1987). The climatological analysis to in situ turbid-
ity (Fig. 8a) at 1 m depth reveals lower turbidity values in
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austral winter (June and July) and summer (January). 
These findings indicate that decreased turbidity in July 
2021 (longitudinal section) facilitated enhanced light pene-
tration into the water column, promoting increased phyto-
plankton biomass during that year. The significant p-values 
(p 0.05) observed between in situ turbidity and bands 
used in this study (Table 1) show consistency with the sig-
nificant trends, particularly those found in the closest 
region of the electromagnetic spectrum (i.e., blue and 
green). This could be attributed to the seasonality of the 
CDOM input (high absorption in the blue bands) resulting 
from riverine inputs (González et al., 2010; Curra-Sánchez 
et al., 2022) and the elevated concentrations (high 
reflectance in the green bands) in the region, especially dur-
ing the austral spring-summer seasons (Iriarte et al., 2007; 
González et al., 2010; Vásquez et al., 2021). 

Seasonal peaks of high turbidity (1 m depth) were 
observed during spring (October and November) 
(Fig. 8a), which coincides with increased river discharge 
deliver freshwater and sediments in the study region 
(Wetz et al., 2006; Flores et al., 2022). The spatial variabil-
ity of turbidity and was high between months and 
along the longitudinal section. Average turbidity values 
were higher in January (0.53 NTU) and lower in July 
(0.48 NTU), while showed higher average values in 
July (5.67 lg/L) and lower values in January (1.30 lg/L). 
This pattern is consistent with inland waters characterized 
by high turbidity from continental inputs or sediment 
resuspension leading to low phytoplankton production 
due to limited light availability (González et al., 2019). 
Phytoplankton dynamics, including productivity and spa-
tial/temporal changes in biomass, are primarily governed 
by light (Cloern, 1987; Wang et al., 2019). Zonal variability 
in turbidity and associated with seasonal river dis-
charges (see Fig. 1d), generates freshwater plumes with 
high levels of biological activity in austral spring. This is 
coherent with a high probability of SST fronts associated 
with the Puelo River discharge (Saldı́as et al., 2021). The 
climatology of turbidity at 1 m depth is consistent with 
the monthly variability of the longitudinal sections with 
higher turbidity values in January compared to July. On 
the other hand, the climatology of showed higher con-
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Table 1
Pearson’s Correlation , significance at *p .05 and root mean square
error (RSME) between in situ turbidity and each bands used in this
study for period 2018–2020.

Wavelength Color R2 p-value RMSE 

Blue 0.58 0.10 2.1542e + 3 
Blue 0.94 2.1542e + 3 
Blue 0.86 2.1542e + 3 
Blue 0.81 2.1542e + 3 
Green 0.91 2.1542e + 3 
Green 0.89 2.1541e + 3 
Green 0.88 2.1541e + 3 
Red 0.59 0.09 2.1542e + 3 
Red 0.52 0.11 2.1542e + 3 
Red 0.35 0.16 2.1542e + 3 
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(R2 ) 60 
Rrs

Rrs412
Rrs443 0 01
Rrs469 0 03
Rrs488 0 04
Rrs531 0 02
Rrs547 0 02
Rrs555 0 03
Rrs645
Rrs667
Rrs678
centrations in January and lower ones in July in contrast to 
that reported by the longitudinal sections where surface 

measurements (1 m depth) in July were higher com-
pared to January. The differences in in the climatol-
ogy and in the towed sections may result from the 
differences in the depth of the sensors and the quality of 
the ”photosynthetically active light” received by the phyto-
planktonic organisms at the surface and subsurface, high-
lighting the importance of depth in the measurements 
and the role played by the biological factor in the variabil-
ity of (Morel and Berthon, 1989; Mann and Lazier, 
2005). 

Finally, and given that the primary source of CDOM is 
allochthonous, i.e., originates primarily from terrestrial 
inputs subsidies from outflow river (Cannizzaro et al., 
2013; Curra-Sánchez et al., 2022), it is essential to establish 
a baseline, from a remote sensing perspective, which are the 
bandwidths at which these main water components modify 
the IOPs in case II waters (Shi and Wang, 2019). Turbidity 
measurements have been assessed through remote sensing 
studies using the red and NIR bands, which are also widely 
used in developing algorithms for estimating surface 
in turbid waters (Chen et al., 2007, and references 
therein; Nechad et al., 2009; Constantin et al., 2016; Cui 
et al., 2020). Consequently, a correlation between these 
two parameters is expected. However, turbidity is an indi-
rect measure of multiple optically active constituents 
(OACs), including dissolved (e.g. CDOM, suspended sedi-
ments, phytoplankton,) and particulate (mostly inorganic) 
matter, which optically competes with (Chen et al., 
2007; Constantin et al., 2016). In most inland, estuarine, 
and coastal (case II) waters, the overlapping and uncorre-
lated absorption by OACs in key spectral regions (e.g blue 
and green) can greatly bias retrievals of (Gitelson 
et al., 2009; Gitelson et al., 2011). Moreover, various phys-
ical and biological processes operate to resuspend bottom 
sediments over multiple temporal scales. The amount of 
solids in suspension in the water column also changes the 
OACs in the water column and also alters the size-
distribution of particulate matter, thereby affecting the 
absorption and scattering per unit mass of suspended solids 
(Menon and Adhikari, 2018; Laiolo et al., 2021). Hence, it 
is crucial to identify the spectral signatures of these OSCs 
within optically complex marine systems. 

5. Conclusions 

Our study evaluated the spatio-temporal trends in 
remote sensing reflectance along the inner sea of Chi-
loé (ISC) in the Chilean northern Patagonia. As with pre-
vious studies, the ISC was divided in northern and 
southern basins, due to their distinct oceanographic char-
acteristics. Based on a large dataset (2003—2021) of col-
lected by MODIS-Aqua, we observed marked seasonal 
patterns in all bands. When considering the spatial 
scales, the individual heterogeneity reveals negative 
and significant trends predominantly in the blue spectrum
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(412, 443, 469, and 488). The trends in the band ratios 
between the green and blue bands (i.e., 469, 488, 531, 
547, and 555 nm) allowed us to make inferences concerning 
the seasonality of river freshwater input, with elevated ter-
restrial suspended particulate and dissolved concentra-
tions. It is essential to have a baseline for studying the 
trophic status of an inland marine system based on bio-
optical properties (Potes et al., 2012; Turner et al., 2021). 
Future efforts require having in situ reflectance spectra of 
inland waters to identify environmental changes with high 
resolution (spatial, temporal, and spectral). This study 
reinforces that satellite data is a valuable complement to 
in situ measurements for the generation of regional algo-
rithms to monitor water quality in northern Patagonia. 
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Linford, P., Pérez-Santos, I., Montes, I., et al., 2023. Recent deoxygena-
tion of patagonian fjord subsurface waters connected to the peru–chile 
undercurrent and equatorial subsurface water variability. Global 
Biogeochem. Cycles (p. e2022GB007688). 

Liu, G., Li, L., Song, K., et al., 2020. An olci-based algorithm for semi-
empirically partitioning absorption coefficient and estimating chloro-
phyll a concentration in various turbid case-2 waters. Remote Sens. 
Environ. 239, 111648. 

Lo Prejato, M., McKee, D., Mitchell, C., 2020. Inherent optical 
properties-reflectance relationships revisited. J. Geophys. Res.: Oceans 
125 (11), e2020JC016661. 

Mann, K.H., Lazier, J.R., 2005. Dynamics of marine ecosystems: 
biological-physical interactions in the oceans. John Wiley & Sons. 
28
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