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A B S T R A C T

Turbidity is associated with the loss of water transparency due to the presence of particles, sediments, suspended 
solids, and organic or inorganic compounds in the water, of natural or anthropogenic origin. Our study aimed to 
evaluate the spatio-temporal variability of turbidity from Sentinel-2 (S2) images in the Reloncaví sound and 
fjord, in Northern Patagonia, Chile, a coastal ecosystem that is intensively used by finfish and shellfish aqua-
culture. To this end, we downloaded 123 S2 images and assembled a five-year time series (2016–2020) covering 
five study sites (R1 to R5) located along the axis of the fjord and seaward into the sound. We used Acolite to 
perform the atmospheric correction and estimate turbidity with two algorithms proposed by Nechad et al. (2009, 
2016 Nv09 and Nv16, respectively). When compared to match-up, and in situ measurements, both algorithms had 
the same performance (R2 = 0.40). The Nv09 algorithm, however, yielded smaller errors than Nv16 (RMSE =
0.66 FNU and RMSE = 0.84 FNU, respectively). Results from true-color imagery and two Nechad algorithms 
singled an image from the austral autumn of 2019 as the one with the highest turbidity. Similarly, three images 
from the 2020 austral autumn (May 20, 25, 30) also exhibited high turbidity values. The turbid plumes with the 
greatest extent occurred in the autumn of 2019 and 2020, coinciding with the most severe storms and runoff 
events of the year, and the highest turbidity values. Temporal trends in turbidity were not significant at any of 
the study sites. However, turbidity trends at sites R1 and R2 suggested an increasing trend, while the other sites 
showed the opposite trend. Site R1 recorded the highest turbidity values, and the lowest values were recorded at 
R5 in the center of the sound. The month of May was characterized by the highest turbidity values. The 
application of algorithms from high-resolution satellite images proved to be effective for the estimation and 
mapping of this water quality parameter in the study area. The use of S2 imagery unraveled a predictable spatial 
and temporal structure of turbidity patterns in this optically complex aquatic environment. Our results suggest 
that the availability of in situ data and the continued evaluation of the performance of the Nechad algorithms can 
yield significant insights into the dynamics and impacts of turbid waters in this important coastal ecosystem.

1. Introduction

Turbidity stands out as a key parameter to understand the health of 

marine and aquatic ecosystems worldwide. An increase in water 
turbidity is associated with the presence of suspended and/or dissolved 
material of natural or anthropogenic origin (Abirhire et al., 2020; Bilotta 
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and Brazier, 2008; Grobbelaar, 2009; Smith, 2003). Water quality in 
coastal regions is of special concern; over a third of the global population 
inhabits the world's coastlines and depends on them to provide multiple 
ecosystem services, particularly in developing countries (Barragán and 
de Andrés, 2015). Turbidity in coastal marine and inner water systems 
can be influenced by algal blooms and suspended sediments. Similarly, 
overland surface runoff from rainfall events can carry colored dissolved 
organic matter (CDOM) or excess nutrients from agriculture, sewage, or 
animal husbandry among other anthropogenic compounds (Abirhire 
et al., 2020; Babin et al., 2003; Brando et al., 2015; Lee et al., 2015; 
Mendes et al., 2014; Potes et al., 2012; Saldías et al., 2012). As visible 
light (400–700 nm) strongly declines with depth, increased turbidity 
compresses the euphotic depth and curtails the energy available for 
photosynthesis (Cloern, 1987; Davies-Colley and Smith, 2001; de Castro 
Medeiros et al., 2015; Kirk, 1985; Pérez-Ruzafa et al., 2019; Zohary 
et al., 2009). On the other hand, water-clouding components and par-
ticulates facilitate the dispersion of contaminants by providing a vector 
for their transport, that can also precipitate and smother benthic com-
munities (Alma et al., 2023; Anderson et al., 2012; Díaz et al., 2019; 
Gelda et al., 2013; Goldsmith et al., 2021; Quang et al., 2017; Soria et al., 
2021; Vanhellemont and Ruddick, 2014). Thus, the threats to the well- 
being of coastal societies and ecosystems posed by changes in turbidity 
can be faced through scientific advances that help to accurately and 
dynamically estimate turbidity and its causes.

Methods for measuring turbidity in situ include indirect metrics, such 
as the Secchi disk depth (SDD), which directly measures water trans-
parency and is inversely related to turbidity, or direct quantification 
using turbidimeters or nephelometers. These turbidity measurements 
are very accurate but they are chiefly manual procedures and require the 
intensive use of personnel. Hence, in situ techniques can be resource- 
intensive and consequently of limited spatial and temporal resolution 
(Alvado et al., 2021; Caballero et al., 2020; Delegido et al., 2019; 
Rodríguez-López et al., 2022; Sòria-Perpinyà et al., 2021; Zhan et al., 
2022). Turbidity measurements are usually reported in Nephelometric 
Turbidity Units (NTU) and Formazin Nephelometric Units (FNU). 
Studies by Anderson (2005) and Dogliotti et al. (2015) indicated that 
there is no difference between the units in which turbidity is expressed 
(NTU and FNU), and both turbidity units are comparable or equivalent 
regardless of the instrument's technology used. Ocean color remote 
sensing currently provide direct estimations of water turbidity and other 
environmental variables over multiple spatial and temporal scales 
(Aragonés et al., 2016; Caballero et al., 2019; Caballero and Stumpf, 
2020; Dickey et al., 2006; Khan et al., 2021). Multiple satellite missions 
now provide synoptic measurement of the properties and Optically 
Active Constituents (OACs) of water such as chlorophyll, CDOM, and 
suspended solids (SS), among others (Aavaste et al., 2021; Kuhn et al., 
2019; Sòria-Perpinyà et al., 2022; Vantrepotte et al., 2012; Werdell 
et al., 2018). In this way, turbidity in water can be estimated through 
inherent and apparent optical properties (Inherent Optical Properties - 
IOPs and Apparent Optical Properties - AOPs, respectively), as well as 
through the OACs that are present in aquatic ecosystems (Budhiman 
et al., 2012; Dogliotti et al., 2015; Kirk, 1984; Soriano-González et al., 
2022).

The waters of coastal zones are optically complex and known as Case 
2 waters (Jerlov, 1957; Mélin and Vantrepotte, 2015; Morel and Gentili, 
1993; Morel and Prieur, 1977). The turbidity of coastal waters is 
determined by the independent variation of OACs in the water (Aavaste 
et al., 2021; Babin et al., 2003; Odermatt et al., 2012; Uudeberg et al., 
2019; Uudeberg et al., 2020; Vantrepotte et al., 2012). Generally 
speaking, the presence and concentration of OACs is determined by 
factors that influence both, IOPs and AOPs. According to Morel and 
Prieur (1977) and Mobley (2001, 2022), IOPs are defined as the physical 
determinants of how light interacts with water and allow us to under-
stand the absorption and scattering of electromagnetic radiation as a 
function of its various constituents. IOPs are independent of the light 
field (absorption and scattering coefficients). Their variations are 

directly related to changes in the concentration, size distribution, and 
composition of OACs (Aavaste et al., 2021; Dickey et al., 2006; Werdell 
et al., 2018). On the other hand, AOPs were defined by Preisendorfer 
(1976), Morel and Gentili (1993), and Mobley (2001) as the optical 
properties of water that are influenced by the distribution of the angles 
of incidence and the amount of light and illumination available in the 
environment, together with the concentration of substances present in 
the medium. That is, AOPs vary depending on how the medium is illu-
minated (i.e., radiance and reflectance) (Jerlov, 1957; Kirk, 1984; 
Mobley, 2001, 2022).

Empirical and semi-empirical algorithms from satellite imagery can 
be used to estimate water quality parameters (WQP) such as total sus-
pended solids (SS), CDOM, chlorophyll-a concentration (Chl-a), and 
turbidity in different waters using the optical properties and OACs of 
water (e.g., Z. Lee et al., 2002; Nechad et al., 2009, 2010; Phuoc Hoang 
Son et al., 2013; Dogliotti et al., 2015; Balasubramanian et al., 2020; 
Magrì et al., 2023). In this way, the products derived from remote 
sensing allow the continuous monitoring of WQP in the ocean and 
coastal zone over time and the study of their association with different 
environmental drivers (Werdell et al., 2018). However, understanding 
the drivers of WQP and how they change under emergent anthropogenic 
threats requires an accurate assessment of the quality and bias of sat-
ellite estimates (Pahlevan et al., 2021; Sòria-Perpinyà et al., 2021; 
Vanhellemont, 2019; Vanhellemont and Ruddick, 2016, 2021).

Recently, the use of high spatial, temporal, and spectral resolution 
images from multispectral optical sensors such as Landsat and Sentinel-2 
(S2) or their combination, has become a valuable tool for studying the 
dynamics of water transparency (Caballero et al., 2022; Jiang et al., 
2024; Khan et al., 2021; Kuhn et al., 2019; Rodríguez-López et al., 
2022). For example, Jiang et al. (2024), used SSD data from a long-term 
program monitoring water clarity dynamics in the Pearl River Estuary to 
regionalize WQP using the Landsat series and found improved water 
quality due to decreased anthropogenic perturbations and landscape 
change. Similarly, Caballero et al. (2022) proposed an innovative 
method to derive turbidity and Chl-a using S2 in a hypersaline coastal 
lagoon in the Western Mediterranean Sea and developed an early 
warning tool to monitor eutrophication processes with a high spatial 
resolution (10 m). In a more recent study, Zhang et al. (2024) employed 
S2 images to investigate spatiotemporal fluctuations in turbidity be-
tween 2016 and 2022 in an inland lake and examined the drivers of 
changes. Together, high-resolution S2 images for the visible and near- 
infrared bands, their frequent updates, and its neural network auto-
mated cloud detection system provide a valuable scientific resource for 
the study and monitoring of WQP (Alvado et al., 2021; Caballero et al., 
2018; Caballero et al., 2020; Ciancia et al., 2020; Delegido et al., 2019; 
Pahlevan et al., 2017; Soomets et al., 2020; Sòria-Perpinyà et al., 2021; 
Sòria-Perpinyà et al., 2022; Zhan et al., 2022).

Different algorithms can be used to assess WQP. Lee et al. (2002), 
Nechad et al. (2009, 2010), Phuoc Hoang Son et al. (2013), Dogliotti 
et al. (2015), Balasubramanian et al. (2020), and Magrì et al. (2023)
have contributed with valuable insights for the development of empir-
ical and semi-empirical algorithms derived from satellite imagery. For 
example, Nechad et al., 2010, proposed an algorithm to estimate the 
concentration of suspended particulate matter (SPM) in Belgian coastal 
waters. The algorithm was tested and validated using in situ measure-
ments, demonstrating a high degree of agreement between the satellite- 
derived SPM concentrations and the in situ measurements. In addition, 
the development of algorithms for atmospheric correction (AC) has 
facilitated the precise retrieval of turbidity in a variety of aquatic eco-
systems. The combination of S2 images with new AC algorithms, such as 
ACOLITE, has enabled the exploration of WQP with high spatial reso-
lution and low error (Caballero et al., 2020, 2022; Chowdhury et al., 
2023; Jiang et al., 2024; Vanhellemont and Ruddick, 2016, 2018, 2021; 
Vijay Prakash et al., 2021).

The Northern Patagonia (NP) coastal region (41–45◦S) is character-
ized by a complex geomorphology and high spatiotemporal variability 
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in hydrometeorological conditions. A combination of natural and 
anthropogenic forcings, for example, surface runoff and erosion of active 
forestry or agricultural areas following extreme precipitation events, are 
likely to contribute to turbidity in coastal waters (Curra-Sánchez et al., 
2022; Iriarte et al., 2017; Lara et al., 2010; Lara et al., 2016; León-Muñoz 
et al., 2021; Saldías et al., 2019). On the other hand, the aquaculture of 
mytilids and salmonids, the main anthropic activity in the coastal areas 
of NP, has experienced enormous growth in recent years. According to 
FAO (2022), Chile is among the top ten producers of mytilid mussels and 
salmonids worldwide. In particular, the Reloncaví sound and fjord, at 
the equatorward edge of NP stand out for the intensive use of its coastal 
waters by aquaculture facilities, which also has altered WQP in the area 
(Astorga et al., 2018; Barria et al., 2012; Camelo-Guarín et al., 2021; 
Molinet et al., 2015, 2021). Earlier research around NP has provided 
some insights on the estimation and retrieval of WQP using remote 
sensing (Iriarte et al., 2017; Saldías et al., 2021; Vásquez et al., 2021). 
For example, Iriarte et al. (2017) used L3 MODIS-Aqua (Moderate Res-
olution Imaging Spectroradiometer) data to characterize spatial and 
temporal variability in Chl-a. Similarly, Saldías et al. (2021) and 
Vásquez et al. (2021) reported a peak of Chl-a and normalized Fluo-
rescence Line Height (nFLH) during the austral autumn using MODIS- 
Aqua data with a resolution of 1 km. The spatial resolution of MODIS, 
however, is not sufficient to understand dynamic environmental pro-
cesses, such as fluvial plume dispersion in the coastal ocean or WQP in 
small coastal and inland ecosystems. The potential of using the Nechad 
algorithms based on S2 images to understand turbidity, and more 
generally, the dynamics of WQP in NP remains largely unexplored, 
despite the importance of marine ecosystem health for human well- 
being in the region (Camelo-Guarín et al., 2021). To this end, we hy-
pothesized that turbid waters in the Reloncaví area are primarily asso-
ciated with seasonal processes, such as river discharge patterns. To 
tackle this hypothesis, we take advantage of S2 imagery, and examine 

the performance of the default algorithms, and test the accuracy of 
turbidity retrievals in time using in situ data available from an oceano-
graphic buoy moored in the Reloncaví sound, and relate spatial patterns 
of turbidity to freshwater inflows using discharge data from a gauge of 
the main river drainage to the fjord.

2. Materials and methods

For a more comprehensive understanding, Fig. 1 illustrates the 
general methodological workflow diagram of this research. The sections 
depicted in Fig. 1 will be elucidated in greater detail below.

2.1. Study area

The Reloncaví sound located in Inner Sea Chiloé (ISC), Northern 
Patagonia, is a semi-enclosed basin of about 50 km in length (north- 
south) and a width of approximately 32 km (east-west), with depths that 
can reach 450 m. It is connected to the Pacific Ocean through the Chacao 
channel on the west (Fig. 2, GEBCO Gridded Bathymetry Data (GEBCO, 
2024); Pinilla Matamala, 2011; Valle-Levinson et al., 2007). The climate 
is temperate maritime with annual rainfall between 3000 and 4000 mm 
per year, and temperatures range between 7 and 10 ◦C in winter, and 12 
and 15 ◦C in summer (Aguayo et al., 2019; Garreaud, 2018; Garreaud 
et al., 2013; Lara et al., 2018; Subiabre and Rojas, 1994). Weather can be 
highly variable, driving quick changes in sea surface temperature (SST) 
driven by strong southerly winds. Harmful algal blooms (HABs) are 
common (Díaz and Figueroa, 2023; Saldías et al., 2021; Sandoval et al., 
2018; Soto-Mardones et al., 2009). Water circulation in the fjord and 
sound is influenced by tides, currents, and winds (Pantoja et al., 2011; 
Pérez-Santos et al., 2019; Pérez-Santos et al., 2021; Vásquez et al., 
2021). The sound receives large freshwater discharges from the Relon-
caví fjord, the drainage of the Puelo, Petrohué, and Cochamó rivers. 

Fig. 1. Methodological workflow diagram.
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These Andean rivers exhibit a pluvio-nival regime, resulting in large 
outflows of suspended and dissolved material into the coastal zone 
(Aguayo et al., 2019; Iriarte et al., 2014; León-Muñoz et al., 2013, 2021; 
Saldías et al., 2019). The Puelo river exhibits the third largest discharge 
of the southwestern Andes with an outflow of mean annual flows of 
approximately 670 m/s (Lara et al., 2008). On the other hand, the 
Reloncaví fjord is one of the main areas for the capture of wild mussel 
seed (larvae), which are used locally for mussel aquaculture, in addition 
to the salmon farms located there (Barria et al., 2012; Buschmann et al., 
2009; Buschmann et al., 2021; Camelo-Guarín et al., 2021; Molinet 
et al., 2021).

2.2. In situ turbidity, fluviometric, and meteorological datasets

We used in situ turbidity data extracted for the period between 
November 2017 to July 2020 from a moored oceanographic buoy 
(OSIL's Fulmar) belonging to the i-mar Center of the Universidad de Los 
Lagos and Reloncaví Marine Observatory. The buoy is located in the 
Reloncaví sound at − 41◦38′10” S and − 72◦50′4” W, adjacent to R4 
(Fig. 2b). Turbidity is measured using a multiparameter probe (AML 
Metrec XL). To store the turbidity dataset, the instrument has an hourly 
GSM transmission system and an onboard datalogger. The extracted 
data were segmented to the mean of the values recorded between 14:00 
and 15:00 h (local time), coinciding with the satellite visit time in the 
study area, with a time difference window of ±1 h. Turbidity data can be 
downloaded from the website http://www.cdom.cl/ (accessed May 
2022). To study the spatial distribution of turbidity in the study area, we 
selected five sites, where we estimated turbidity over a 3 × 3 pixel 
window (90 m2, see Fig. 2b). The location of sites was selected to span a 
range of conditions and were located inside the fjord and influenced by 
the river (R1), at the fjord mouth (R2), in the plume of the river inside 
the sound (R3), at the location of the oceanographic buoy in the sound 

(R4) and finally, on a location inside the sound and an away from the 
influence of the discharge of any major rivers (R5). To illustrate the role 
of local meteorological forcing on turbidity, a time series of daily river 
flow and daily precipitation measured at the Puelo river meteorological 
station are presented. Precipitation and river flow data were down-
loaded from the Dirección General de Aguas (DGA, https://dga.mop.go 
b.cl/, accessed November 2023). The wind (speed and direction) values 
were taken from https://climatologia.meteochile.gob.cl/ in a three-day 
window (72 h) before the image acquisitions.

2.3. Remote sensing images and processing

Cloud cover (CC) is common in our study area. Hence, we conducted 
a detailed visual inspection of each of the images in the date range of our 
study. The image selection process yielded a dataset with a minimum 

Fig. 2. (a) Location of the study area in Northern Patagonia. The red box indicates the Reloncaví sound area. Urbanized areas are indicated in red, freshwater lakes in 
blue, rivers draining into the study basins are shown in black lines, and the Puelo river basin is in yellow line. (b) RGB (True color) image of the area enclosed in the 
red box in (a) showing the spatial distribution of the sampling sites (R) in the Reloncaví sound and fjord, which are distributed from inside the fjord (R1), at the fjord 
mouth (R2), the fjord plume (R3), next to the oceanographic buoy (R4) and away from the influence of riverine discharges (R5). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Table 1 
Number of selected Sentinel-2 images for the 2016–2020 period.

Month / Year 2016 2017 2018 2019 2020 Total

January 1 1 3 2 6 13
February 1 1 3 3 2 10
March 0 2 2 5 2 11
April 0 2 3 1 2 8
May 0 1 2 2 4 9
June 1 0 2 3 1 7
July 2 2 2 0 2 8
August 0 1 2 0 3 6
September 1 2 1 3 2 9
October 1 2 2 5 5 15
November 1 1 4 3 2 11
December 3 2 4 3 4 16
Total 11 17 30 30 35 123

0: No images available or No clear.
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and maximum CC of 0 % and 57.9 %, respectively for the full scene. We 
analyzed a total of 123 images from 2016 to 2020 (see Table 1). Further 
details are provided in Supplementary Material 2 (SM 2).

The S2 mission is based on a constellation of two identical satellites 
(2A/2B) in the same orbit, 180◦ out of phase with each other. Each 
satellite carries one MSI (Multispectral Instrument) sensor, with a revisit 
frequency of five days at latitudes near the equator, and higher fre-
quencies at higher latitudes due to orbital overlap, (2 to 3 days for the 
study area) and with a radiometric resolution of 12 bits. Table 2 shows 
the spectral and spatial resolution of S2 (ESA - European Space Agency, 
2015). The S2 images are provided at two processing levels: Level 1C 
(L1C), which are radiometrically and geometrically corrected to the Top 
Of Atmosphere (TOA), and Level-2A (L2A ) which provides atmo-
spherically corrected surface reflectance images, derived from the 
associated Level-1C products. The AC of S2 images includes the 
correction of the scattering by of air molecules (Rayleigh scattering), of 
the absorbing and scattering effects of atmospheric gasses, in particular 
ozone, oxygen, and water vapor, and the correction of absorption and 
scattering due to aerosol particles (ESA - European Space Agency, 2015). 
For this work, a total of 123 S2-L1C scenes over the study area were free- 
downloaded from the Sentinel Science Data Center (https://dataspace. 
copernicus.eu, accessed May 2022).

Using ACOLITE (free software, https://github.com/acolite/), we 
applied AC to the S2 images to go from the L1C processing level to the 
L2A processing level. ACOLITE is a generic algorithm developed at 
Royal Belgian Institute of Natural Sciences (RBINS) for atmospheric 
correction and processing of satellite imagery for coastal and inland 
waters, allowing the correct estimation/validation of the turbidity 
parameter (Vanhellemont, 2019, 2020; Vanhellemont and Ruddick, 
2018), supporting different types of multispectral and hyperspectral 
sensors, including S2 (Vanhellemont and Ruddick, 2016). We used the 
default DSF “Dark Spectrum Fitting” method of the software 
(Vanhellemont, 2019, 2020; Vanhellemont and Ruddick, 2018). All S2 
images (L1C level) were atmospherically corrected with ACOLITE 
(version 20221114); output data correspond to water reflectance at a 
wavelength (λ)(ρw(λ)), resampled to a pixel size of 10 m. ρw(λ) is defined 
in Eq. (1): 

ρw(λ) = πLw(λ)
/
E0+

d (λ) (1) 

where Lw(λ) represents the water-leaving radiance (after removal of air- 
water interface reflection) and E0+

d (λ) is the downwelling irradiance.
In addition, a built-in algorithm in ACOLITE optionally performs 

sunglint contamination corrections on SWIR band sensors (Harmel et al., 
2018; Vanhellemont, 2019). We selected this sunglint correction to 
obtain the reflectance of the glint-free surface.

2.4. Turbidity algorithms

ACOLITE incorporates two functions to estimate turbidity based on 
Nechad's algorithms (Nechad et al., 2009, 2016), hence we used both to 
estimate turbidity for all sites and dates (2009, Nv09, and 2016, Nv16, 
respectively). The Nv16 algorithm version was recalibrated in 2016 by 
Bouchra Nechad using the Nv09 algorithm, specifically for S2 and L8 
(Nechad et al., 2016). In Nechad's approach, turbidity is derived using a 
semi-empirical algorithm relating spectral reflectance to IOPs absorp-
tion and backscatter: 

Turbidity =
AT ρw(λ)

1 − ρw(λ)/C
+BT (2) 

where AT, BT and C are wavelength-dependent calibration coefficients 
encompassing IOPs characteristics (for more details see Nechad et al., 
2009, 2010, 2016). We employ the red band (λ = 665nm), which is 
related to S2 band 4 (B4) of S2 (see Table 2).

The oceanographic buoy located at R4 provides in situ turbidity data 
in NTU units, yet for practical purposes we present the data in FNU units 
for comparison with turbidity from Nechad's algorithms (Anderson, 
2005; Dogliotti et al., 2015). The mean turbidity value was extracted in a 
3 × 3 pixel kernel centered on the in situ measurement location, which 
we used to construct a time series for the 2016–2020 period. Following 
guidelines by Huettmann and Arhonditsis (2023), all data is available 
from the Zenodo repository (https://zenodo.org/doi/10.5281/zenodo 
.13645864).

2.5. Statistical analysis

Firstly, we carried out an exploratory analysis with all the in situ 
(buoy) turbidity data to detect outliers using descriptive statistics. To 
remove possible outliers in the in situ and satellite data we used a 25 % 
deviation of the standard deviation (SD) criteria. For the in situ data, we 
examined turbidity measurements during the satellite overpass, and for 
the satellite data we used the data in each 3 × 3 pixels spatial window. 
The resulting in situ observations were match-up with the data from the 
images available for the turbidity product. A total of 39 satellite images 
were used for the match-up exercise of satellite data with the data from 
the buoy located at the R4 site. Then, we compared in situ turbidity and 
the Nv09 and Nv16 algorithms using linear regression and quantified 
the agreement using the coefficient of determination (R2), Pearson's 
correlation (Pearson's r), root-mean-square-error (RMSE), centered root- 
mean-square-error (CRMSE) difference, and the amplitude of their 
variations represented by their SD, which were visualized using a Tay-
lor's diagram (Taylor, 2001). To compile the satellite time series for each 
site we included the 123 valid images (Table 1). However, following the 
sparse and uneven sampling of turbidity data in time we used simple 
exponential smoothing from the Simple Time Series Analysis app from 
OriginPro (Academic version 2023b 10.0.5.157) software to visualize 
patterns and trends in time. Similarly, we used a Mann-Kendall (MK) test 
to evaluate turbidity trends at all sites. Finally, we analyzed a time series 
of records of precipitation and river flow data together with our 
turbidity values derived from the Nv09 algorithm at R1, the more 
landward station. The reconstructed time series from R1 to R5 allowed 
us to discern the presence of seasonal patterns of turbidity in our study 
area and examine the role of precipitation and river flow on turbidity in 
the Reloncaví coastal ecosystem. To this end, we wanted to test the 
hypothesis that using the Nechad algorithms we could (a) detect sea-
sonal patterns in the presence of turbid waters across the fjord-sound 
waters and that (b) the presence of turbid waters was associated with 
large riverine outflow events.

Table 2 
Spectral and spatial resolution of S2.

Bands Spectral 
region

Spatial 
resolution (m)

λS2A 

(nm)
λS2B 

(nm)
Bandwidth S2A - 

S2B (nm)

B1
Coastal 
aerosol 60 442.7 442.2 21–21

B2 Blue 10 492.4 492.1 66–66
B3 Green 10 559.8 559 36–36
B4 Red 10 664.6 664.9 31–31
B5 Red-edge1 20 704.1 703.8 15–16
B6 Red-edge2 20 740.5 739.1 15–15
B7 Red-edge3 20 782.8 779.7 20–20
B8 NIR 10 832.8 832.9 106–106

B8A
NIR 
narrow 20 864.7 864 21–22

B9
Water 
vapor 60 945.1 943.2 20–21

B10
SWIR / 
Cirrus 60 1373.5 1376.9 31–30

B11 SWIR1 20 1613.7 1610.4 91–94
B12 SWIR2 20 2202.4 2185.7 175–185
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3. Results

3.1. In situ turbidity

Table 3 shows the statistics for in situ turbidity records during the 
2017–2020 period. The turbidity values ranged from 0.18 FNU to 7.57 
FNU across the year. The minimum value was recorded during austral 
spring (0.18 FNU), while the maximum was found in austral autumn. 
The mean of the 39 match-up values for in situ comparisons was 1.94 
FNU. The large variation across turbidity match-up values is underlined 
by the CV (Table 3.)

3.2. Turbidity algorithms

Fig. 3a shows the relation between the two algorithms (Nv09 and 
Nv16) and the in situ turbidity measurements (site R4). The linear 
relationship with in situ data for both algorithms was nearly identical 
(R2 = 0.40, Pearson's r = 0.63, Fig. 3a). However, the Nv09 algorithm 
presented a lower RMSE than the Nv16 algorithm (see Fig. 3a). A similar 
result was observed in the Taylor analysis (Fig. 3b). The Nv09 and Nv16 
algorithms reported a Pearson's r = 0.63 (matching with the linear fit), 
and Nv09 presented lower variability among its data (SD = 0.83 FNU), 
with CRMSE less than 1.34 FNU. Therefore, it is possible to suggest that 
both algorithms have a good correlation with in situ turbidity. Never-
theless, the Nv09 algorithm appears to be the most reliable option for 
developing a turbidity predictor model in the study area at wavelengths 
of 665 nm, which is supported by the lower CRMSE and SD (Fig. 3b).

Fig. 4 shows true color (RGB) images derived from S2 images (top 
panel) and turbidity maps from the Nv09 algorithm (bottom panel) for 
austral autumn. The turbidity maps are presented in logarithmic scale 
following the high turbidity level observed during austral autumn. Using 
the Nv09 algorithm the highest estimated value was greater than log10 
1.29 FNU for 2019-May-06 and 2020-May-20. It is important to note 
that the highest turbidity values observed in austral autumn correspond 
to large freshwater outflows from the Puelo river (see Fig. 4).

3.3. Spatio-temporal analysis

The use of both algorithms in all sites captured the same temporal 
pattern when estimating high and low turbidity values at all sites (see 
SM1 Figs. 1, 2, 3) and hereafter we present results only for the Nv09 
algorithm. More information on the estimated turbidity values by both 
algorithms can be obtained from SM1.

During the austral summer, the values ranged from 0.3 FNU to 5 
FNU, with R5 and R1 sites recording the lowest and highest values, 
respectively (see Fig. 5, SM1 Fig. 4). Temporal patterns of turbidity were 
stable among study sites with CV between 24 % and 37 %. Sites R1 to R4 
had a CV of less than 30 % and only site R5 exceeded this figure (see SM1 
Table 3 and SM1 Fig. 5a). In space, stations closer to the river showed 
higher turbidity values; in time the highest values are observed during 
autumn and the lowest in spring (see Fig. 5).

Fig. 6 shows that the lowest turbidity value was 0.090 FNU at site R5 
(see SM1 Table 2). The austral springs were characterized by the lowest 
turbidity values, minimum values less than 1 FNU were detected at sites 

R3 to R5 (see Figs. 5, 6). The highest turbidity values during spring were 
obtained at sites R1 and R2, both exceeding 7 FNU and 4 FNU, respec-
tively (see SM1 Fig. 5d). Turbidity in sites R1 and R2 showed low 
variability compared to site R5, where CVs ranged from 31 % to 57 % 
during this season (see SM1 Table 6). On the contrary, high turbidity 
values were found in autumn, specifically in May (see Fig. 5, and SM1 
Fig. 4). Over the time series, the highest estimated turbidity value was 
27.962 FNU in the autumn of 2019 at site R1 (see Figs. 5, 6, and SM1 
Table 2). In this same season, one year later, high turbidity values were 
observed in all sites (see Fig. 5). In the autumn of 2020, sites R2, R3, and 
R4 reached their maximum turbidity with values of 19.556 FNU, 8.721 
FNU, and 5.285 FNU respectively (see Figs. 4, 5, 6, and SM1 Fig. 5b). The 
largest turbidity variations were observed at sites R1 and R2 in the 
autumn, and the smallest at site R5 (see SM1 Table 4). Little variation in 
turbidity among all study sites was recorded in winter with CVs ranging 
between 24 % and 35 %, similar to the behavior found in the summer, 
maximum values remained between 3 FNU and 4 FNU for all study sites 
(see Fig. 6, and SM1 Fig. 5c). The largest variation in turbidity was 
recorded at site R5 and the lowest at site R2, opposite to what we 
recorded in autumn (see SM1 Table 5). We observed no significant 
temporal trends in all the reconstructed time series. Although expo-
nential smoothing and the MK test showed a slight increase in turbidity 
at sites R1 and R2 during the study period, this was not observed at sites 
R3, R4, and R5 (see Fig. 6, and SM1 Table 1).

4. Discussion

Worldwide, turbidity has been estimated for aquatic ecosystems 
through remote sensing using spectral band ratios and algorithms. To 
this end, the Nechad algorithms have been applied to multiple inland 
and coastal ecosystems around the world due to their accuracy in 
deriving high and low turbidity values as in Nechad et al. (2009, 2010, 
2016), Dogliotti et al. (2015), Novoa et al. (2017) and Tavora et al. 
(2023a). However, studies related to spatial and temporal turbidity 
variability in coastal marine ecosystems are still scarce (Caballero et al., 
2022; Chowdhury et al., 2023; Jiang et al., 2024,). Our study represents 
the first time that the ACOLITE turbidity algorithms have been used and 
validated on the NP marine ecosystem, which we extended to the ex-
amination of the spatial and temporal dynamics of a turbid river.

Advances in algorithms for AC have allowed the accurate retrieval of 
WQP. The studies summarized in Table 4 demonstrate the effectiveness 
of ACs for the study of turbidity in aquatic ecosystems. Elhag et al. 
(2019) applied the NDTI index (Normalized Difference Turbidity Index), 
derived from Sentinel 2 Correction (Sen2Cor), and obtained R2 values 
between 0.74 and 0.94. Delegido et al. (2019) combined in situ mea-
surements of SDD with band ratios using different ACs, obtaining me-
dium to high R2 (0.34–0.82) and low RMSE (1.4 NTU and 2.7 NTU). 
Meanwhile, Zhan et al. (2022) applied similar techniques to estimate 
turbidity in a hypersaline coastal lagoon, obtaining a similar R2 and 
error variation. Nevertheless, it is important to note that the errors 
observed in our study were among the lowest presented in Table 4.

The versatility of ACOLITE distinguishes it from other AC. ACOLITE 
enables the processing of images from a variety of satellite missions, 
which have contributed to the management and monitoring of aquatic 
ecosystems over time (Caballero et al., 2020, 2022; Jiang et al., 2024; 
Kuhn et al., 2019; Novoa et al., 2017; Paulista et al., 2023; Rodríguez- 
Benito et al., 2020; Rodríguez-López et al., 2022; Tavora et al., 2023b; 
Vijay Prakash et al., 2021). For example, Sun et al. (2021) and 
Chowdhury et al. (2023) estimated turbidity using ACOLITE with S2 and 
obtained R2 = 0.67 and r = 0.97, respectively. Consistent with the 
aforementioned studies, our R2 value was found to be within the ranges 
reported in Table 4. This can be attributed to the multiple processes that 
take place across our study area, such as algal blooms, strong winds, 
precipitation, and discharge from multiple streams and rivers. In addi-
tion, the quality and quantity of CDOM and SS associated with river 
discharge (Curra-Sánchez et al., 2022, 2024; Davies-Colley and Smith, 

Table 3 
Descriptive statistics of in situ turbidity measured during the period 2017–2020.

Statistical / Season Summer Autumn Winter Spring Total

min (FNU) 0.31 2.05 0.5 0.18 0.18
max (FNU) 5.04 7.57 3.48 2.75 7.57
mean (FNU) 1.89 4.3 1.68 1.08 1.94
SD 1.59 2.08 1.09 0.87 1.72
CV (%) 84.04 48.34 64.87 80.87 88.84
n 14 6 5 14 39

min/max— minimum/maximum turbidity values, SD—standard deviation, 
CV—coefficient of variation, and n—data number.
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2001; Vijay Prakash et al., 2021) in the area, are linked to both pluvial or 
nival regimes (Garreaud et al., 2013; León-Muñoz et al., 2013, 2021), 
which results in fluctuations in water clarity and quality. The ACOLITE 
turbidity algorithms proved effective to estimate turbidity in the NP 
marine ecosystem. Is important to note that the algorithm's performance 
can vary depending on the characteristics of the study area. In highly 
turbid waters (case II waters) or during extreme events, some algorithms 
may produce higher errors, as demonstrated by Chowdhury et al. 

(2023), which highlights the need for continual assessment of algorithm 
performance for the effective monitoring and management of these 
important environments.

Future studies may wish to implement other ACs or other variants/ 
techniques beyond ACOLITE for turbidity derivation and integration of 
time series using satellites such as L8. A method proposed by Zhang et al. 
(2024) employed machine learning models to estimate turbidity using 
NDTI and band ratio accurately. However, it is important to consider 

Fig. 3. (a) Scatter plot between measured turbidity and the algorithms under study. The black circle and line represent the values from the Nechad 2009 algorithm 
(Nv09), while the red square and line are those resulting from the Nechad 2016 algorithm (Nv16), dash line represents a 1:1 line. (b) Taylor diagram displaying a 
simultaneous statistical comparison of both algorithms and in situ turbidity measurement. The colored contours indicate the CRMSE values. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The top panels show true color (RGB) images and the bottom panels show results from the Nv09 algorithm for the autumn days where we detected high 
turbidity. The top and bottom far left panels (red panel) show the image with the highest turbidity on May 6th, 2019. All images show the turbid plume streaming out 
of the fjord into the sound. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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that the results may have been influenced by the type of ecosystem 
examined, a eutrophic lake, by the presence of aquatic vegetation, and 
the high Chl-a concentration. On the other hand, Lizcano-Sandoval et al. 
(2022) applied the same index (NDTI) to S2 imagery in west-central 
Florida and used turbidity to exclude images before mapping temporal 
changes in submerged seagrass. The evaluation and comparison of 
turbidity behavior in the spectral region of the Red-edge and near- 
infrared (NIR) be considered (see Table 2). Chowdhury et al. (2023)
demonstrate that water turbidity is sensitive to different wavelengths 
within this spectral range. In this sense, in future studies, it would be 
advisable to test both algorithms (Nv09 and Nv16) at different wave-
lengths. This is to detect and determine how the turbidity values behave 
in the Reloncaví sound in different spectral ranges. The Nv16 algorithm 
may obtain better results when tested at wavelengths longer than 665 
nm.

Remote sensing applications for aquaculture are promising tools for 
managing the challenges of ongoing climatic change (Newell et al., 
2021; Snyder et al., 2017). Mussel aquaculture in NP is under challenges 
that threaten to disrupt current patterns of climatic and environmental 
variability, including the seasonal dynamics of environmental factors 
such as Chl-a, SS, CDOM, HABs, salinity, SST, pH, dissolved oxygen 
(DO), winds, turbidity, among others (Castillo et al., 2016; Curra- 
Sánchez et al., 2022; Iriarte et al., 2007; Iriarte et al., 2017; Lara et al., 
2016; León-Muñoz et al., 2018; Molinet et al., 2015; Pantoja et al., 2011; 
Soto et al., 2019). Seasonal patterns in turbidity are evident, with 
maximum values during austral autumn for all years of our study period 
in association with changes in mean precipitation (e.g., autumn 2017, 
2019, and 2020). Precipitation directly influences the outflow of water 
into the sound from the Puelo river, as reported by Aguayo et al. (2019)

and León-Muñoz et al. (2013, 2021). The linkage between precipitation 
and large turbid plumes entering the Reloncaví sound was apparent in 
our study (see Figs. 4, 7), and the results of Flores et al. (2022) support 
this behavior/pattern. Similar results were reported by Shen et al. 
(2021) and Mahmoud et al. (2023), in Asia, who showed that turbidity 
at the confluence of river tributaries or the highest concentrations of SS, 
Chl-a, and dissolved solids, respectively, were associated with heavy 
rainfall.

The greatest extent of turbid plumes took place in the autumn of 
2019 and 2020, following the most severe storms of the year and the 
highest turbidity value at site R1 (27.96 FNU derived from the Nv09 
algorithm). The highest turbidity values appear coincident with the 
most pronounced discharge events occurring during 2019-May-02, 
2020-May-16, and 2020-May-25 (Fig. 7). Conversely, less rainy sea-
sons and curtailed river discharge are often associated with less con-
spicuous plumes and low turbidity values (e.g., summer 2018). 
Therefore, in agreement with our hypotheses, the variation of maximum 
turbidity values seems to be influenced by the combination of precipi-
tation and fluvial discharge from the river, especially in autumn and 
thus follows a seasonal pattern. This results in a discernible seasonal 
pattern.

Iriarte et al. (2017) reported changes in phytoplankton concentra-
tions associated with intra-annual variability in the hydrological regime 
of the Puelo river during 2003–2011. Higher concentrations of Chl-a and 
phytoplankton abundance in surface waters were observed when flows 
were lower than 350 m3s− 1, coinciding with dry austral autumns during 
the El Niño event (e.g. January–June 2007). This resulted in a decou-
pling between outflows and Chl-a in surface waters. Similar results were 
found by Saldías et al. (2021) for the study area in the ISC seasonal 

Fig. 5. Spatio-temporal distribution of turbidity derived from the Nv09 algorithm for all sites. The sites are identified by the following color codes: R1 in black, R2 in 
light blue, R3 in light green, R4 in purple, and R5 in mustard. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
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climatology (2003–2019), reporting the maximum values of nFLH in the 
austral autumn. Likewise, Vásquez et al. (2021) reported elevated Chl-a 
and nFLH peaks during April, May and June. These peaks in Chl-a may 
have been influenced by periods of high river discharge, together with 
other factors such as wind, SST fronts, or changes in the physical 
structure of the water column. The growth of phytoplankton can be 
facilitated by river discharges in the presence of nutrients and other 
oceanographic variables (Paudel et al., 2016). In a recent study, Mah-
moud et al. (2023) demonstrated a correlation between water temper-
ature and Chl-a, a relationship that is also influenced by sunlight, which 

directly affects phytoplankton growth. On the other hand, Zhang et al. 
(2024), using a machine learning approach, found a strong and positive 
correlation between turbidity and Chl-a concentration, indicating that 
changes in Chl-a can modulate variations in turbidity. These studies 
indicate that the high Chl-a in the austral autumn could be coincident 
with the elevated water turbidity found in this study (see Figs. 5, 7, and 
SM1 Fig. 4, 5b). Our findings demonstrated a direct relationship be-
tween large precipitation events leading to high river streamflow, and 
increased turbidity (see Figs. 3, 5, 7). Hence, high Chl-a values in MODIS 
Chl-a in our study system may follow from the presence of SS and CDOM 

Fig. 6. Turbidity time series constructed for all sites for the period 2016–2020. Black circles show the estimated turbidity time series from the Nv09 algorithm, and 
the red line represents the smoothing fit with a 95 % prediction band (confidence interval). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)
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from surface runoff from the adjacent basins during certain periods of 
the year.

The discharge and influence area of the river plume increases 
turbidity in the coastal zone. This study confirms that this turbidity 
behavior is maintained over time (see Figs. 4, 5, 7). The highest turbidity 
values were found in the fjord and fjord mouth (R1 and R2). In this 
sense, Curra-Sánchez et al. (2022) found that turbid waters in a river and 
estuary in the ISC were caused by high concentrations of CDOM from 
river discharge, mainly of allochthonous origin. Given the strong rela-
tionship between turbidity and total suspended matter (R2 = 0.82), 
Chowdhury et al. (2023) showed that in-stream and estuarine sites had 
the highest turbidity values consistent with our results. Using hydro-
logical models Aguayo et al. (2019) estimated future discharge scenarios 
of the Puelo river and found a trend of high discharge during May, June, 
and July (late austral autumn, and early austral winter), which was 
driven by abundant precipitation. We foresee that this scenario could 

lead to a river plume of high turbidity, as shown in our results. Our 
results show that as we move away from the river discharge, turbidity 
decreases, as was the case at sites R4 and R5 (see Fig. 5). However, on 
some occasions in austral autumn, both sites recorded values close to 5 
FNU (see Figs. 5, 6, and SM1 Table 4). The high turbidity levels at these 
sites may be also driven by wind forcing of river plumes. Flores et al. 
(2022) used MODIS (λ = 645 nm) to detect the river plume in the 
Reloncaví sound and observed elevated reflectance values of this band. 
Hence, the B4 band (see Table 2) in the Nechad algorithm appears as an 
effective means of detecting the river plume and turbid waters.

Fig. 8 shows the wind compass 72 h before the acquisition of the four 
S2 images where we detected high turbidity. The first three dates pro-
vide evidence that the highest wind frequency (>30 %) corresponds to 
northerly wind with speeds above 4 kt (7.2 km/h), coincident with 
increasing turbidity in the seaward sites. Similar results have been re-
ported by Banas et al. (2005), Hyun (2007), Abirhire et al. (2020), Soria 

Table 4 
Comparison between different satellite-based atmospheric correction (AC) algorithms to estimate turbidity in aquatic ecosystems, using several statistical indicators.

Authors AC R2 RMSE Aquatic Ecosystem Location

Delegido et al. (2019) C2RCC, C2X and Polymer 0.34–0.82 1.4 NTU and 2.7 NTU Reservoirs Valencian Community, Spain
Elhag et al. (2019) Sen2Cor* 0.74–0.94 0.07–1.15 (NDTI) Baysh Dam Wadi Baysh, Saudi Arabia
Sun et al. (2021) ACOLITE 0.62–0.77 3.13 NTU - 5.21 NTU Lakes Wuhan, China
Zhan et al. (2022) C2X 0.64–0.73 1.5 NTU - 1.7 NTU Hypersaline Coastal Lagoon Mar Menor, Spain
Chowdhury et al. (2023) ACOLITE 0.97 (r) 15.93 FNU Guadalquivir Estuary Gulf Cadiz, southern Spain
This study ACOLITE 0.40/0.63 (r) 0.66 FNU Sound/Coastal Zone Reloncaví sound, NP, Chile

Atmospheric Correction (AC), determination coefficient (R2), Pearson's correlation coefficient (r), Root Mean Square Error (RMSE).
* Is not indicated, only S2 satellite images are mentioned.

Fig. 7. Time series of precipitation and river flow data from DGA, and turbidity data at location R1 derived from the Nechad 2009 algorithm (Nv09).
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et al. (2021), Rodríguez-López et al. (2022). This suggests that winds 
could be transferring SS, CDOM, and particulate matter from the river 
discharge and coastal zone to R4 and R5, thus increasing turbidity at 
both seaward sites.

Several studies have shown that anthropogenic activities, such as 
land use and land use change (LULUC), aquaculture, and marine traffic, 
can have a significant impact on water quality in NP (Curra-Sánchez 
et al., 2022, 2024; Lara et al., 2018; León-Muñoz et al., 2021; Pérez 
et al., 2015). Organic matter, suspended solids, and other compounds 
may be present in the environment, including silica, phosphate, nitrite, 
or nitrate (Paudel et al., 2016; Pérez et al., 2015). Earlier studies have 
demonstrated that basins that are predominantly influenced by agri-
culture or native forests can affect and/or modify the size of the solids 
and the amount of CDOM present in the ecosystem (Alvado et al., 2021; 
Babin et al., 2003; Curra-Sánchez et al., 2022, 2024; Gippel, 1995). 
Hence, land-use patterns can also affect the turbidity of coastal water. 
For example, Curra-Sánchez et al. (2022) observed that runoff from a 
basin dominated by agricultural use had a greater availability and 
quantity of nutrients, specifically nitrates and phosphates. In contrast, a 
basin with a larger area of native forest registered high values of CDOM 
and lower nutrient concentrations. Surface runoff can contribute large 
amounts of organic matter and nutrients, such as agricultural or forestry 
wastes, causing water turbidity to increase due to algal blooms and even 
HABs on the surface and in the water column (Bilotta and Brazier, 2008; 
Doan et al., 2015; Hudson and Vandergucht, 2015; Pérez-Ruzafa et al., 
2019). Further effects of turbid waters include impacts on benthic and 
pelagic species, including both photosynthesis-dependent and filter- 
feeding organisms. Seasonal exposure to turbid waters can disrupt 
and/or alter the status and growth behavior of these organisms over 
time and particularly in their early life stages (Alma et al., 2023; Gold-
smith et al., 2021). Considering that aquaculture is the main economic 
activity in the Reloncaví area, the hypotheses tested by our study are 
highly relevant for the future development of continuous monitoring 
and warning systems that can reliably detect increases in water turbidity 
in near-real time. The dynamic spatio-temporal variability of turbidity 

in the Reloncaví sound underscores the need for comprehensive moni-
toring strategies to understand and manage WQP in the study area.

4.1. Future directions

More recent studies have estimated turbidity with different Machine 
Learning (ML) techniques and Ensemble Learning (EL) models, such as 
Random Forest (RF), feedforward neural network (FNN), Artificial 
Neural Networks (ANNs), multivariate adaptive regression splines 
(MARS), Classification and Regression Tree (CART), Extreme Gradient 
Boosting (XGBoost), Gradient Boosting Decision Tree (GBDT), 
LightGBM (LGBM), and CatBoost. These new ML approaches have been 
able to incorporate different environmental variables and water quality 
parameters, such as land use and land use change, turbidity, pH, chlo-
rophyll, conductivity, precipitation, and temperature, among others 
(Anmala and Turuganti, 2021; Venkateswarlu and Anmala, 2023; Zhang 
et al., 2024).

In a basin in Kentucky, USA, Venkateswarlu and Anmala (2023)
predicted turbidity by applying RF and FNN. The R2 prediction of RF for 
training, testing, and overall was the lowest compared to all other var-
iables tested, while a slightly lower prediction was obtained with FNN 
(Venkateswarlu and Anmala, 2023). However, Venkateswarlu and 
Anmala (2023) highlight that the main predictor variables for turbidity 
were precipitation and temperature. Including both variables (precipi-
tation and temperature) provided a good fit and removing them 
decreased model performance (Anmala and Turuganti, 2021; Ven-
kateswarlu and Anmala, 2023). The latter results support the corre-
spondence between precipitation and turbid water events in our study 
and highlights the challenges ahead in the implementation of ML 
learning approaches in a data-poor environment. The impact of LULUC 
can directly influence WQP (Curra-Sánchez et al., 2022, 2024). Rivers, 
connecting terrestrial and marine ecosystems, transport material and 
solids originating from adjacent basins. In this way, beyond precipita-
tion and temperature, land use patterns should also be considered in 
turbidity prediction when utilizing ML algorithms (Anmala and 

Fig. 8. The top panel shows wind rose corresponding to 72 h before S2 image acquisition and the bottom panel shows results from the Nv09 algorithm for autumn 
days. The panel in red shows the image from the date with the highest turbidity in 2019-May-06. The panel in black shows the images from 2020-May-20, 2020-May- 
25, and 2020-May-30, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Turuganti, 2021; Venkateswarlu and Anmala, 2023).
In this way, the predictive ability of ML algorithms will certainly 

improve the prediction and estimation of WQP. Their use in combina-
tion with in situ and remote sensing observations is poised to help the 
conservation and management of coastal and aquatic ecosystems, and 
support decision-making. However, as more data becomes available in 
the future, new challenges will arise through limited processing time 
and computational power, together with the complex process of 
hyperparameter calibration in some ML algorithms.

5. Conclusion

Our study successfully assessed the spatial and temporal correspon-
dence of the ACOLITE turbidity algorithms in the NP marine ecosystem 
for the first time. Our findings indicate that the Nv09 algorithm is more 
reliable than the Nv16 algorithm at a wavelength of 665 nm for the 
development of a future turbidity predictor model in Reloncaví sound. 
Precipitation-driven river discharge influenced turbidity with a seasonal 
signal peaking during austral autumn (May). Site R1 (river) and R5 
(away from the influence of river discharges) recorded the highest and 
lowest turbidity values, respectively. However, there is still uncertainty 
regarding the influence by chlorophyll, suspended solids, and colored 
dissolved organic matter. More accurate estimates of these parameters 
will depend on additional in situ sampling, the use of alternative spectral 
bands, and the application of other algorithms. By validating a time 
series of high-resolution S2 observations with in situ data observations 
around NP, our study contributes to the development of an early 
warning system that can anticipate the occurrence of high turbidity 
events and promote future actions that encourage sustainable manage-
ment of the coastal zone.
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Díaz, P.A., Álvarez, G., Varela, D., Pérez-Santos, I., Díaz, M., Molinet, C., Seguel, M., 
Aguilera-Belmonte, A., Guzmán, L., Uribe, E., Rengel, J., Hernández, C., Segura, C., 
Figueroa, R.I., 2019. Impacts of harmful algal blooms on the aquaculture industry: 
Chile as a case study. Perspect. Phycol. 6, 39–50. https://doi.org/10.1127/PIP/ 
2019/0081.

Dickey, T., Lewis, M., Chang, G., 2006. Optical oceanography: recent advances and 
future directions using global remote sensing and in situ observations. Rev. Geophys. 
44 https://doi.org/10.1029/2003RG000148.

Doan, P.T.K., Némery, J., Schmid, M., Gratiot, N., 2015. Eutrophication of turbid tropical 
reservoirs: scenarios of evolution of the reservoir of Cointzio, Mexico. Ecol. Inform. 
29, 192–205. https://doi.org/10.1016/J.ECOINF.2015.01.006.

Dogliotti, A.I., Ruddick, K.G., Nechad, B., Doxaran, D., Knaeps, E., 2015. A single 
algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine 
waters. Remote Sens. Environ. 156, 157–168. https://doi.org/10.1016/J. 
RSE.2014.09.020.

Elhag, M., Gitas, I., Othman, A., Bahrawi, J., Gikas, P., 2019. Assessment of water quality 
parameters using temporal remote sensing spectral reflectance in arid environments, 
Saudi Arabia. Water 11, 556. https://doi.org/10.3390/W11030556.

ESA - European Space Agency, 2015. Sentinel-2 User Handbook. ESA Standard 
Document. European Space Agency, París. 

FAO, 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue 
Transformation. https://doi.org/10.4060/CC0461EN.

Flores, R.P., Lara, C., Saldías, G.S., Vásquez, S.I., Roco, A., 2022. Spatio-temporal 
variability of turbid freshwater plumes in the Inner Sea of Chiloé, northern 
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Iriarte, J.L., León-Muñoz, J., Marcé, R., Clément, A., Lara, C., 2017. Influence of seasonal 
freshwater streamflow regimes on phytoplankton blooms in a Patagonian fjord. New 
Zeal. J. Mar. Freshw. Res. 51, 304–315. https://doi.org/10.1080/ 
00288330.2016.1220955.

Jerlov, N.G., 1957. A transparency-meter for ocean water. Tellus 9, 229–233. https:// 
doi.org/10.1111/J.2153-3490.1957.TB01877.X.

Jiang, J., Chen, Z., Sun, K., Chen, Y., Mu, M., Sun, Q., Zeng, S., 2024. Monitoring 36-year 
water clarity dynamics in turbid waters of the Pearl River estuary, China, using 
Landsat data. Ecol. Inform. 81, 102600 https://doi.org/10.1016/J. 
ECOINF.2024.102600.

Khan, R.M., Salehi, B., Mahdianpari, M., Mohammadimanesh, F., Mountrakis, G., 
Quackenbush, L.J., 2021. A meta-analysis on harmful algal bloom (HAB) detection 
and monitoring: a remote sensing perspective. Remote Sens. 13, 4347. https://doi. 
org/10.3390/RS13214347.

Kirk, J.T.O., 1984. Dependence of relationship between inherent and apparent optical 
properties of water on solar altitude. Limnol. Oceanogr. 29, 350–356. https://doi. 
org/10.4319/LO.1984.29.2.0350.

Kirk, J.T.O., 1985. Effects of suspensoids (turbidity) on penetration of solar radiation in 
aquatic ecosystems. Hydrobiologia 125, 195–208. https://doi.org/10.1007/ 
BF00045935.

Kuhn, C., de Matos Valerio, A., Ward, N., Loken, L., Sawakuchi, H.O., Kampel, M., 
Richey, J., Stadler, P., Crawford, J., Striegl, R., Vermote, E., Pahlevan, N., 

W. García-Tuñon et al.                                                                                                                                                                                                                        Ecological Informatics 83 (2024) 102814 

13 

https://doi.org/10.1016/J.WATRES.2008.03.018
https://doi.org/10.1016/J.WATRES.2008.03.018
https://doi.org/10.5194/OS-11-909-2015
https://doi.org/10.1016/J.ISPRSJPRS.2012.01.008
https://doi.org/10.1016/J.OCECOAMAN.2009.03.002
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0105
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0105
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0105
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0105
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0105
https://doi.org/10.3390/RS12030451
https://doi.org/10.3390/RS10070982
https://doi.org/10.3390/W11122499
https://doi.org/10.1038/S41598-020-65600-1
https://doi.org/10.1038/S41598-020-65600-1
https://doi.org/10.3390/RS14122744/
https://doi.org/10.3390/RS14122744/
https://doi.org/10.1016/J.AQUACULTURE.2021.737116
https://doi.org/10.1016/J.AQUACULTURE.2021.737116
https://doi.org/10.5194/os-12-533-2016
https://doi.org/10.3389/FMARS.2023.1186441/BIBTEX
https://doi.org/10.3389/FMARS.2023.1186441/BIBTEX
https://doi.org/10.3390/RS12132147
https://doi.org/10.3390/RS12132147
https://doi.org/10.1016/0278-4343(87)90042-2
https://doi.org/10.1016/0278-4343(87)90042-2
https://doi.org/10.1016/J.SCITOTENV.2021.150435
https://doi.org/10.1016/J.ECSS.2024.108897
https://doi.org/10.1111/J.1752-1688.2001.TB03624.X
https://doi.org/10.1111/J.1752-1688.2001.TB03624.X
https://doi.org/10.1007/S10452-015-9524-5/FIGURES/8
https://doi.org/10.1007/S10452-015-9524-5/FIGURES/8
https://doi.org/10.4995/RAET.2019.12603
https://doi.org/10.3390/MICROORGANISMS11081874
https://doi.org/10.3390/MICROORGANISMS11081874
https://doi.org/10.1127/PIP/2019/0081
https://doi.org/10.1127/PIP/2019/0081
https://doi.org/10.1029/2003RG000148
https://doi.org/10.1016/J.ECOINF.2015.01.006
https://doi.org/10.1016/J.RSE.2014.09.020
https://doi.org/10.1016/J.RSE.2014.09.020
https://doi.org/10.3390/W11030556
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0215
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0215
https://doi.org/10.4060/CC0461EN
https://doi.org/10.1016/J.JMARSYS.2022.103709
https://doi.org/10.1016/J.JMARSYS.2022.103709
https://doi.org/10.3354/cr01505
https://doi.org/10.1175/jcli-d-12-00001.1
https://doi.org/10.1175/jcli-d-12-00001.1
https://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://doi.org/10.5268/IW-3.3.581
https://doi.org/10.5268/IW-3.3.581
https://doi.org/10.1002/HYP.3360090108
https://doi.org/10.1002/HYP.3360090108
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0255
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0255
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0255
https://doi.org/10.1016/B978-012370626-3.00075-2
https://doi.org/10.1016/J.RSE.2017.10.022
https://doi.org/10.1016/J.RSE.2017.10.022
https://doi.org/10.1016/J.JGLR.2015.06.007
https://doi.org/10.1016/J.JGLR.2015.06.007
https://doi.org/10.1016/J.ECOINF.2023.102132
https://doi.org/10.1016/J.ECOINF.2023.102132
https://doi.org/10.3390/IJERPH2007040014
https://doi.org/10.3390/IJERPH2007040014
https://doi.org/10.1016/J.ECSS.2007.05.015
https://doi.org/10.1016/J.ECSS.2007.05.015
https://doi.org/10.1016/J.POCEAN.2014.10.004
https://doi.org/10.1016/J.POCEAN.2014.10.004
https://doi.org/10.1080/00288330.2016.1220955
https://doi.org/10.1080/00288330.2016.1220955
https://doi.org/10.1111/J.2153-3490.1957.TB01877.X
https://doi.org/10.1111/J.2153-3490.1957.TB01877.X
https://doi.org/10.1016/J.ECOINF.2024.102600
https://doi.org/10.1016/J.ECOINF.2024.102600
https://doi.org/10.3390/RS13214347
https://doi.org/10.3390/RS13214347
https://doi.org/10.4319/LO.1984.29.2.0350
https://doi.org/10.4319/LO.1984.29.2.0350
https://doi.org/10.1007/BF00045935
https://doi.org/10.1007/BF00045935


Butman, D., 2019. Performance of Landsat-8 and Sentinel-2 surface reflectance 
products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote 
Sens. Environ. 224, 104–118. https://doi.org/10.1016/j.rse.2019.01.023.

Lara, A., Villalba, R., Urrutia, R., 2008. A 400-year tree-ring record of the Puelo River 
summer-fall streamflow in the Valdivian rainforest eco-region, Chile. Clim. Chang. 
86, 331–356. https://doi.org/10.1007/S10584-007-9287-7/METRICS.

Lara, C., Miranda, M., Montecino, V., Iriarte, J.L., 2010. Chlorophyll-a MODIS mesoscale 
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en las áreas Seno de Reloncaví y mar interior de Chiloé. Instituto de Fomento 
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Ligi, M., Toming, K., Reinart, A., 2020. Opticalwater type guided approach to 
estimate optical water quality parameters. Remote Sens. 12. https://doi.org/ 
10.3390/RS12060931.

Valle-Levinson, A., Sarkar, N., Sanay, R., Soto, D., León, J., 2007. Spatial structure of 
hydrography and flow in a Chilean fjord, Estuario Reloncaví. Estuar. Coasts 30, 
113–126. https://doi.org/10.1007/BF02782972/METRICS.

Vanhellemont, Q., 2019. Adaptation of the dark spectrum fitting atmospheric correction 
for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. 
Environ. 225, 175–192. https://doi.org/10.1016/J.RSE.2019.03.010.

Vanhellemont, Q., 2020. Sensitivity analysis of the dark spectrum fitting atmospheric 
correction for metre- and decametre-scale satellite imagery using autonomous 
hyperspectral radiometry. Opt. Express 28 (20), 29948–29965. https://doi.org/ 
10.1364/OE.397456.

Vanhellemont, Q., Ruddick, K., 2014. Turbid wakes associated with offshore wind 
turbines observed with Landsat 8. Remote Sens. Environ. 145, 105–115. https://doi. 
org/10.1016/J.RSE.2014.01.009.

Vanhellemont, Q., Ruddick, K., 2016. Acolite for Sentinel-2: Aquatic Applications of MSI 
Imagery, 740. ESA Special Publication SP.

Vanhellemont, Q., Ruddick, K., 2018. Atmospheric correction of metre-scale optical 
satellite data for inland and coastal water applications. Remote Sens. Environ. 216, 
586–597. https://doi.org/10.1016/J.RSE.2018.07.015.

Vanhellemont, Q., Ruddick, K., 2021. Atmospheric correction of Sentinel-3/OLCI data 
for mapping of suspended particulate matter and chlorophyll-a concentration in 
Belgian turbid coastal waters. Remote Sens. Environ. 256, 112284 https://doi.org/ 
10.1016/J.RSE.2021.112284.

Vantrepotte, V., Loisel, H., Dessailly, D., Mériaux, X., 2012. Optical classification of 
contrasted coastal waters. Remote Sens. Environ. 123, 306–323. https://doi.org/ 
10.1016/J.RSE.2012.03.004.

Vásquez, S.I., Belén De La Torre, M., Saldías, G.S., Montecinos, A., Lausch, A., 
Bumberger, J., Oppelt, N., 2021. Meridional changes in satellite chlorophyll and 
fluorescence in optically-complex coastal waters of Northern Patagonia. Remote 
Sens. 13, 1026. https://doi.org/10.3390/RS13051026.

Venkateswarlu, T., Anmala, J., 2023. Importance of land use factors in the prediction of 
water quality of the Upper Green River watershed, Kentucky, USA, using random 
forest. Environ. Dev. Sustain. 1–24. https://doi.org/10.1007/S10668-023-03630-1/.

Vijay Prakash, K., Geetha Vimala, C.S., Preethi Latha, T., Jayaram, C., Nagamani, P.V., 
Laxmi, C.N.V., 2021. Assessment of water quality along the southeast coast of India 
during COVID-19 lockdown. Front. Mar. Sci. 8, 338. https://doi.org/10.3389/ 
FMARS.2021.659686/BIBTEX.

Werdell, P.J., McKinna, L.I.W., Boss, E., Ackleson, S.G., Craig, S.E., Gregg, W.W., Lee, Z., 
Maritorena, S., Roesler, C.S., Rousseaux, C.S., Stramski, D., Sullivan, J.M., 
Twardowski, M.S., Tzortziou, M., Zhang, X., 2018. An overview of approaches and 
challenges for retrieving marine inherent optical properties from ocean color remote 
sensing. Prog. Oceanogr. 160, 186–212. https://doi.org/10.1016/J. 
POCEAN.2018.01.001.

Zhan, Y., Delegido, J., Erena, M., Soria, J.M., Ruiz-Verdú, A., Urrego, P., Sòria- 
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W. García-Tuñon et al.                                                                                                                                                                                                                        Ecological Informatics 83 (2024) 102814 

15 

https://doi.org/10.3856/VOL46-ISSUE2-FULLTEXT-18
https://doi.org/10.3390/RS13020182
https://doi.org/10.1065/ESPR2002.12.142
https://doi.org/10.1065/ESPR2002.12.142
https://doi.org/10.3389/FMARS.2017.00190/
https://doi.org/10.3389/FMARS.2017.00190/
https://doi.org/10.3390/S20030742
https://doi.org/10.3390/S20030742
https://doi.org/10.3390/JMSE9030343
https://doi.org/10.3390/JMSE9030343
https://doi.org/10.3390/RS14051124
https://doi.org/10.3390/W13050686
https://doi.org/10.3390/W13050686
https://doi.org/10.3390/RS14194794
https://doi.org/10.3390/RS14194794
https://doi.org/10.1111/RAQ.12336
https://doi.org/10.1111/RAQ.12336
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0605
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0605
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0605
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0610
https://doi.org/10.1080/17538947.2020.1868584
https://doi.org/10.1080/17538947.2020.1868584
https://doi.org/10.3389/FMARS.2023.1215327
https://doi.org/10.3389/FMARS.2023.1215327
https://doi.org/10.34133/REMOTESENSING.0049
https://doi.org/10.34133/REMOTESENSING.0049
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1029/2000JD900719
https://doi.org/10.3390/RS11192297
https://doi.org/10.3390/RS12060931
https://doi.org/10.3390/RS12060931
https://doi.org/10.1007/BF02782972/METRICS
https://doi.org/10.1016/J.RSE.2019.03.010
https://doi.org/10.1364/OE.397456
https://doi.org/10.1364/OE.397456
https://doi.org/10.1016/J.RSE.2014.01.009
https://doi.org/10.1016/J.RSE.2014.01.009
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0665
http://refhub.elsevier.com/S1574-9541(24)00356-X/rf0665
https://doi.org/10.1016/J.RSE.2018.07.015
https://doi.org/10.1016/J.RSE.2021.112284
https://doi.org/10.1016/J.RSE.2021.112284
https://doi.org/10.1016/J.RSE.2012.03.004
https://doi.org/10.1016/J.RSE.2012.03.004
https://doi.org/10.3390/RS13051026
https://doi.org/10.1007/S10668-023-03630-1/
https://doi.org/10.3389/FMARS.2021.659686/BIBTEX
https://doi.org/10.3389/FMARS.2021.659686/BIBTEX
https://doi.org/10.1016/J.POCEAN.2018.01.001
https://doi.org/10.1016/J.POCEAN.2018.01.001
https://doi.org/10.23818/LIMN.41.18
https://doi.org/10.1016/J.ECOINF.2024.102597
https://doi.org/10.1016/J.ECOINF.2024.102597
https://doi.org/10.1007/S10750-009-0032-2

	Spatio-temporal variability of turbidity derived from Sentinel-2 in Reloncaví sound, Northern Patagonia, Chile
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 In situ turbidity, fluviometric, and meteorological datasets
	2.3 Remote sensing images and processing
	2.4 Turbidity algorithms
	2.5 Statistical analysis

	3 Results
	3.1 In situ turbidity
	3.2 Turbidity algorithms
	3.3 Spatio-temporal analysis

	4 Discussion
	4.1 Future directions

	5 Conclusion
	Author contributions
	Funding
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


