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Abstract

Beta diversity measures the spatial variation in species composition.

Because it influences several community attributes, studies are increas-

ingly investigating its drivers. Spatial environmental heterogeneity is a

major determinant of beta diversity, but canopy-forming foundation spe-

cies can locally modify environmental properties. We used intertidal com-

munities dominated by the canopy-forming alga Mazzaella laminarioides

as a model system to examine how a foundation species affects spatial

environmental heterogeneity and the resulting beta diversity. Since cano-

pies were found to reduce the spatial variation of temperature and desic-

cation during low tides, we hypothesized that canopies would decrease

understory beta diversity, which we tested through a field experiment

that contrasted canopy removal with presence treatments over 32 months.

The beta diversity of sessile species was always lower under canopies, but

canopies never affected the beta diversity of mobile species. The observed

responses for sessile species may result from their abundance being more

dependent on spatial abiotic variation than for mobile species, which can

occur in stressful areas while temporarily foraging or in transit to other

areas. These responses may likely apply to other systems exhibiting

canopy-forming foundation species hosting sessile and mobile species

assemblages.

KEYWORD S
beta diversity, canopy, foundation species, intertidal, mobile species, sessile species

Received: 11 August 2022 Revised: 12 January 2023 Accepted: 24 January 2023

DOI: 10.1002/ecy.3999

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2023 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.

Ecology. 2023;e3999. https://onlinelibrary.wiley.com/r/ecy 1 of 8
https://doi.org/10.1002/ecy.3999

 19399170, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.3999 by C

ochrane C
hile, W

iley O
nline L

ibrary on [10/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-0586-6551
https://orcid.org/0000-0003-2028-8438
https://orcid.org/0000-0001-6582-3188
https://orcid.org/0000-0002-3050-132X
mailto:rscrosat@stfx.ca
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://onlinelibrary.wiley.com/r/ecy
https://doi.org/10.1002/ecy.3999
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecy.3999&domain=pdf&date_stamp=2023-03-09


INTRODUCTION

Beta diversity refers to the spatial variation in species
composition (Magurran, 2004). It is an important metric
because it can inform our understanding of biodiversity
change and its consequences for communities and
ecosystems (Mori et al., 2018). For example, beta diversity
can increase the capacity of communities to withstand
natural or anthropogenic disturbances that affect certain
species more than others (Ferrigno et al., 2016). Overall,
beta diversity has been associated with changes in the
productivity (Silva Pedro et al., 2016; Wang et al., 2021),
multifunctionality (Hautier et al., 2018), and resilience
(Appolloni et al., 2017) of communities. Therefore, beta
diversity is being increasingly considered in regional con-
servation planning (Socolar et al., 2016; Suurkuukka
et al., 2012). While studies continue to address the conse-
quences of beta diversity, additional efforts are focusing
on the mechanisms that drive beta diversity changes
(Maxwell et al., 2022; McDevitt-Irwin et al., 2021;
Mitchell et al., 2022).

Several explanations have been proposed for the varia-
tion observed in beta diversity patterns, including dispersal
limitation, predation, anthropogenic activities, and hetero-
geneity of abiotic conditions (Catal�an et al., 2020; Gianuca
et al., 2017; Legendre et al., 2005; Qian & Ricklefs, 2007).
Spatial environmental heterogeneity increases beta diver-
sity by increasing the variety of environmental conditions
that species encounter across space, which directly or indi-
rectly affects their abundance (Alahuhta et al., 2017; Corte
et al., 2017; Heino et al., 2015; Lawrence et al., 2022;
Silliman & He, 2018). Because spatial environmental het-
erogeneity is ubiquitous in nature, it is likely one of the
major drivers of beta diversity patterns.

The physical attributes of the environment (e.g., soil
properties, topography) are primary determinants of
the magnitude of spatial environmental heterogeneity.
However, such heterogeneity can in turn be influenced
by biological factors. An example is given by foundation
species, which are organisms that typically form exten-
sive canopies. These organisms dominate many terrestrial
and aquatic communities and can be either primary pro-
ducers (e.g., trees and algae) or consumers (e.g., corals
and mussels; Catal�an et al., 2021; Ellison et al., 2019;
Stachowicz, 2001). By limiting abiotic stress in understory
environments, these canopies often increase local species
richness, or alpha diversity (Altieri & van de Koppel,
2014; Ellison, 2019; Watt & Scrosati, 2013). More impor-
tantly for this study, canopies may also decrease the spatial
variation in abiotic conditions in understory environments
despite spatial variation in substrate properties and wind or
water flow above the canopies (Helmuth et al., 2006;
Ørberg et al., 2018; Stevens et al., 2015; von Arx et al., 2012).

This knowledge suggests that canopy-forming foundation
species might limit beta diversity in natural communities.
Such effects should be more pronounced for the sessile spe-
cies than for the mobile species in the associated commu-
nity, since sessile species depend more on local conditions
given their inability to move away after their reproductive
propagules (e.g., spores, seeds, larvae) have settled. This
article evaluates these notions experimentally using inter-
tidal species as amodel system.

We initially show how a dominant canopy-forming
seaweed decreases the spatial variation in temperature
and desiccation during low tides, which are key factors
affecting intertidal life (Benedetti-Cecchi & Trussell,
2014). We then test the hypothesis that canopy removal
increases beta diversity through a field experiment,
which we ran for 32 months to determine the temporal
consistency of the effects. Because sessile species (algae
and filter-feeders) were expected to be more responsive
than mobile species (grazers and predators) to spatial
environmental variation (Allen et al., 2018; Valdivia
et al., 2014), we tested our hypothesis separately for ses-
sile and mobile species, predicting stronger canopy effects
on beta diversity for the sessile species. To evaluate
whether the level of ecological information could influ-
ence the results, we examined beta diversity responses
using data on species occurrence (presence/absence) and
abundance.

MATERIALS AND METHODS

We conducted this study in rocky intertidal habitats on the
Pacific coast of Chile that are dominated by the red alga
Mazzaella laminarioides (Mazzaella hereafter; Broitman
et al., 2001; Santelices, 1990). This seaweed inhabits middle
and low intertidal elevations on this coast between 28� S
and 56� S (Hoffmann & Santelices, 1997). It produces many
foliose fronds up to 35 cm long (Jara & Moreno, 1984) that
often form extensive canopies that limit thermal and desic-
cation extremes at the understory (Hoffmann & Santelices,
1997; Moreno & Jaramillo, 1983; Nielsen & Navarrete,
2004), thereby providing a suitable habitat for small species
(Jara &Moreno, 1984).

To evaluate the ability of Mazzaella canopies to reduce
spatial abiotic variation, we conducted a mensurative
experiment at Chaihuín (39.94� S, 73.58� W). At the
mid-intertidal zone on bedrock areas, patches fully cov-
ered by Mazzaella canopies are interspersed with patches
without canopy cover. At low tide during summer, we
measured temperature and desiccation on random sub-
strate areas underneath canopies and on uncovered areas.
We took 66 temperature measurements under canopies
and 80 on uncovered areas with an infrared thermometer
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(ITF 5, PCE Instruments, Palm Beach, FL, USA).
We measured desiccation using 22 cotton pads (6 cm in
diameter) for canopy-covered areas and 23 pads for uncov-
ered areas. We first submerged all pads in seawater until
they reached constant mass. Then we placed the pads on
the substrate under either full canopy cover or no canopy
cover at low tide. After 1 h of field deployment, we col-
lected all pads and weighed them to calculate the amount
of water loss as a measure of desiccation. We calculated
the spatial variation in temperature and desiccation as the
coefficient of variation (CV) for pairs of randomly selected
observations from each treatment. We tested for canopy
effects through two-sample testing.

To evaluate the effects of Mazzaella canopies on beta
diversity, we did a manipulative experiment using rocky
intertidal habitats with a similar substrate rugosity and
slope, sea surface temperature, and species composition
(Valdivia et al., 2013, 2015) found between Limarí (30.75� S,
71.70� W) and Punta Talca (30.93� S, 71.68� W). We used
mid-intertidal bedrock areas excluding large cracks and tide
pools. On substrate areas fully covered by Mazzaella, we
randomly established 16 permanent plots (30 cm × 30 cm),
marking their position with screws. Using half of the plots
selected at random, we created a canopy removal treatment
by removing allMazzaella thalli (holdfasts and fronds) with
a knife with care to avoid disturbing understory species
(we also removed surrounding Mazzaella fronds that could
lay over these plots). The other half of the plots were not
altered and, thus, served as controls. We started this experi-
ment in January 2015 and ended it in August 2017
(32 months). Any Mazzaella recruits found during this
period in canopy removal plots were removed.

Every 3 months at low tide, we measured the abun-
dance of each species (>5 mm) found in each plot. For
the entirety of each plot, we measured percent cover for
each sessile species and density (number of individuals
per square meter) for each mobile species, as is normally
done in intertidal studies (Broitman et al., 2011; Freilich
et al., 2018; Menge et al., 2017). We identified most taxa
to the species level, with a few identified at higher levels
due to morphological unclarities, as is often done in non-
destructive community studies (Broitman et al., 2001;
Kimbro & Grosholz, 2006; Russell et al., 2006). We used
Oliva and Castilla (1992), Hoffmann and Santelices
(1997), Espoz et al. (2004), and Zagal and Hermosilla
(2007) as identification guides. All scientific names are
given in Appendix S1 and conform to the World Register
of Marine Species (WoRMS, 2022).

We calculated beta diversity for each treatment and
sampling date using species data from pairs of plots selected
at random on each sampling date.We quantified beta diver-
sity through the Jaccard and Bray–Curtis dissimilarity indi-
ces (Clarke & Warwick, 2001; Stevens, 2009). The Jaccard

index measures compositional dissimilarity between
plots based only on differences in species occurrence
(presence/absence). It ranges between 0 (when both plots
have the same species) and 1 (when the plots do not share
any species). The Bray–Curtis index measures composi-
tional dissimilarity between plots based on differences in
species abundance. It ranges between 0 (when both plots
have the same species with equal abundances) and 1 (when
the plots do not share any species). We calculated these
indices separately for sessile andmobile species.

We used generalized additive mixed models (GAMMs)
to evaluate the effect of Mazzaella canopy (two levels: can-
opy and no canopy) on beta diversity and whether its tem-
poral trend depended on canopy presence (Wood, 2017)
using an “ordered factor smooth interaction” approach
(Simpson, 2017). We chose this technique to be able to
examine curvilinear trends in the responses. We ran a sep-
arate model for each beta diversity index for sessile and
mobile species. Appropriate smoothness for each applica-
ble model term was determined through maximum likeli-
hood (Wood, 2011). Model validation was also examined.
All models were fitted using a Gaussian error distribution.
Then, for each beta diversity index and for sessile and
mobile species separately, we plotted the difference
between the smoothed temporal trend of the no-canopy
and canopy treatments (van Rij et al., 2017). If the mean
and 95% confidence interval of the contrast were both
above zero, we interpreted this as meaning that the
no-canopy treatment had a positive effect on beta diver-
sity. We did these statistical analyses with the vegan
(Oksanen et al., 2018), mgcv (Wood, 2017), and itsadug
(van Rij et al., 2017) packages in R version 3.6.1 (R Core
Team, 2019). All of the data on species abundance used
for this study are freely available from the figshare
online repository (Catal�an et al., 2023).

RESULTS

The spatial variation (CV) in temperature was, on aver-
age, 43% lower (t71 = 2.8, p = 0.007) under Mazzaella
canopies (10.4 ± 1.4; mean ± SE) than on uncovered
substrate areas (18.1 ± 2.2), while the spatial variation
in desiccation was on average 48% lower (t20 = 2.2,
p = 0.020) under Mazzaella canopies (38.5 ± 7.6) than on
uncovered substrate areas (74.3 ± 14.4).

During the 32 months of the experiment, we identi-
fied a total of 43 taxa (Appendix S1), including 27 sessile
and 16 mobile taxa. In total, we found 36 taxa (24 sessile
and 12 mobile) for the no-canopy treatment and 42 taxa
(26 sessile and 16 mobile) for the canopy treatment.

For sessile species, beta diversity was higher
overall for the no-canopy treatment than for the
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canopy treatment based on both the Jaccard index
(41% higher on average, t87 = 4.609, p = 0.001) and
the Bray–Curtis index (40% higher on average,
t87 = 6.648, p = 0.001). The temporal trend in beta
diversity throughout the study period was statistically

similar between both treatments based on the Jaccard
index (F0.001,10 = 0.001, p = 0.568) and the Bray–Curtis
index (F1,1 = 0.192, p = 0.662). The confidence band for
the difference between both smoothed temporal trends
revealed that the increase in beta diversity caused by

F I GURE 1 (a, b) Beta diversity of sessile species expressed as (a) the Jaccard index and (b) the Bray–Curtis index for the no-canopy
(canopy removal) and canopy (control) treatments across the 12 studied dates (the line for each treatment connects the corresponding means

and the error bars depict standard error, while the dots depict the values of each replicate plot). (c, d) Difference between the smoothed

temporal trends of beta diversity for the no-canopy and canopy treatments for sessile species based on (c) the Jaccard index and (d) the

Bray–Curtis index, showing in both cases the 95% confidence band. (e, f) Beta diversity of mobile species expressed as (e) the Jaccard index

and (f) the Bray–Curtis index for the no-canopy (canopy removal) and canopy (control) treatments across the studied dates (the line for each

treatment connects the corresponding means and the error bars depict standard error, while the dots depict the values of each replicate plot).

(g, h) Difference between the smoothed temporal trends of beta diversity for the no-canopy and canopy treatments for mobile species based

on (g) the Jaccard index and (h) the Bray–Curtis index, showing in both cases the 95% confidence band.
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canopy removal was persistent over time based on both
dissimilarity indices (Figure 1).

For mobile species, however, neither the Jaccard
index (t87 = 0.465, p = 0.643) nor the Bray–Curtis index
(t87 = 0.484, p = 0.630) differed significantly overall
between the two canopy treatments. The temporal trend
in beta diversity was also statistically similar between
both treatments based on the Jaccard index
(F0.001,10 = 0.001, p = 0.487) and the Bray–Curtis index
(F1,1 = 0.081, p = 0.777). The confidence band for the dif-
ference between both smoothed temporal trends included
zero persistently over time based on both dissimilarity
indices (Figure 1).

DISCUSSION

In intertidal habitats, crevices, ridges, and rugosity create
heterogeneity in temperature and desiccation across
the substrate during low tides (Aguilera et al., 2019;
Chapman & Bulleri, 2003; Lam et al., 2009; Mazzuco
et al., 2020), but Mazzaella canopies reduce such environ-
mental heterogeneity. It is then likely that, after canopy
removal, abiotic filtering eliminated sessile species
lacking physiological adaptations to extreme conditions
in some plots (Crowe et al., 2013), increasing their
occurrence-based beta diversity. The increase in their
abundance-based beta diversity after canopy loss could
have additionally resulted from reduced abundances in
stressful plots in species that can tolerate stressful condi-
tions but that do not thrive in them. Indeed, spatial varia-
tion in assemblage composition often results from
species-specific responses to environmental gradients,
with locations (plots in our case) with similar conditions
often hosting similar assemblages (Catal�an et al., 2020;
L�opez-Delgado et al., 2020).

Species mobility influenced beta diversity responses,
however, since the beta diversity of mobile species was
not affected by canopy removal. Mobile organisms exhibit
dynamic spatial distributions (Schmitz, 2008), so they can
be found in stressful habitats in patchy environments
while foraging or in transit to other places, since they can
reach benign habitats with relative ease (Amarasekare &
Nisbet, 2001; Barua & Heckathorn, 2004; Marini
et al., 2012). This property of mobile species is thus what
might explain the absence of canopy effects on their beta
diversity. In support of this notion, the temporal syn-
chrony of species abundance changes between no-canopy
plots (Pearson’s correlation) was, on average, 0.32 for ses-
sile species but only 0.15 for mobile species, revealing a
higher degree of asynchrony for mobile species consistent
with an active mobility of organisms across space. The
influence of species mobility on beta diversity patterns is

increasingly attracting research attention (Soininen
et al., 2018). This study shows for the first time that spe-
cies mobility influences the effects of foundation species
on beta diversity.

Monitoring biodiversity across space and time is critical
to obtaining a more complete and realistic view of how nat-
ural and anthropogenic disturbances influence ecological
communities (Socolar et al., 2016). This study demonstrates
that the loss of a canopy-forming foundation species
increased the beta diversity of sessile, but not mobile,
assemblages. In addition, we linked these responses to
changes in spatial environmental heterogeneity associated
with the presence of canopies, information that is highly
desirable for beta diversity research (Soininen et al., 2018).
Also, the effects (or lack thereof) of canopy removal on beta
diversity were consistent over almost 3 years. Overall, our
study contributes novel insights into the mechanisms that
shape beta diversity by demonstrating that canopy loss can
increase the biological heterogeneity of the landscape.
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